This paper presents our contribution to the ASVspoof 2017 Challenge. It addresses a replay spoofing attack against a speaker recognition system by detecting that the analysed signal has passed through multiple analogue-to-digital (AD) conversions. Specifically, we show that most of the cues that enable to detect the replay attacks can be found in the high-frequency band of the replayed recordings. The described anti-spoofing countermeasures are based on (1) modelling the subband spectrum and (2) using the proposed features derived from the linear prediction (LP) analysis. The results of the investigated methods show a significant improvement in comparison to the baseline system of the ASVspoof 2017 Challenge. A relative equal error rate (EER) reduction by 70% was achieved for the development set and a reduction by 30% was obtained for the evaluation set.
The most popular systems for automatic sign language recognition are based on vision. They are user-friendly, but very sensitive to changes in regards to recording conditions. This article presents a description of the construction of a more robust system -an accelerometer glove -as well as its application in the recognition of sign language gestures. The basic data regarding inertial motion sensors and the design of the gesture acquisition system as well as project proposals are presented. The evaluation of the solution presents the results of the gesture recognition attempt by using a selected set of sign language gestures with a described method based on HMM and Parallel HMM approaches. The proposed usage of Parallel HMM for sensor-fusion modeling reduced the equal error rate by more than 60%, while preserving 99.75% recognition accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.