Here we present an evaluation of the binding affinity prediction accuracy of the free energy calculation method FEP+ on internal active drug discovery projects and on a large new public benchmark set. File list (3) download file view on ChemRxiv manuscript.pdf (4.23 MiB) download file view on ChemRxiv supplementary.pdf (0.92 MiB) download file view on ChemRxiv tables.zip (5.99 KiB)
Here we present an evaluation of the binding affinity prediction accuracy of the free energy calculation method FEP+ on internal active drug discovery projects and on a large new public benchmark set.<br>
Orexins are neuropeptides that activate the rhodopsin-like G protein-coupled receptors OX1R and OX2R. The orexin system plays an important role in the regulation of the sleep-wake cycle and the regulation of feeding and emotions. The nonselective orexin receptor antagonist suvorexant has been the first drug on the market targeting the orexin system and is prescribed for the treatment of insomnia. Subtype-selective OX1R antagonists are valuable tools to further investigate the functions and physiological role of the OX1R in vivo and promising lead compounds for the treatment of drug addiction, anxiety, pain or obesity. Starting from the OX1R and OX2R crystal structures bound to suvorexant, we exploited a single amino acid difference in the orthosteric binding site by using molecular docking and structure-based drug design to optimize ligand interactions with the OX1R while introducing repulsive interactions with the OX2R. A newly established enantiospecific synthesis provided ligands showing up to 75-fold selectivity for the OX1R over the OX2R subtype. The structure of a new OX1R antagonist with subnanomolar affinity (JH112) was determined by crystallography in complex with the OX1R and corresponded closely to the docking-predicted geometry. JH112 exhibits high selectivity over a panel of different GPCRs, is able to cross the blood–brain barrier and acts as slowly diffusing and insurmountable antagonist for Gq protein activation and in particular β-arrestin-2 recruitment at OX1R. This study demonstrates the potential of structure-based drug design to develop more subtype-selective GPCR ligands with potentially reduced side effects and provides an attractive probe molecule and lead compound.
The recently disclosed next generation of reversible,
selective,
and potent MetAP-2 inhibitors introduced a cyclic tartronic diamide
scaffold. However, the lead compound 1a suffered from
enterohepatic circulation, preventing further development. Nevertheless, 1a served as a starting point for further optimization. Maintaining
potent antiproliferation activity, while improving other compound
properties, enabled the generation of an attractive array of new MetAP-2
inhibitors. The most promising derivatives were identified by a multiparameter
analysis of the compound properties. Essential for the efficient selection
of candidates with in vivo activity was the identification of molecules
with a long residence time on the target protein, high permeability,
and low efflux ratio not only in Caco-2 but also in the MDR-MDCK cell
line. Orally bioavailable, potent, and reversible MetAP-2 inhibitors
impede the growth of primary endothelial cells and demonstrated antitumoral
activity in mouse models. This assessment led to the nomination of
the clinical development compound M8891, which is currently
in phase I clinical testing in oncology patients.
The behavior of four dimethylallyltryptophan synthases (DMATSs) (5‐DMATS and 5‐DMATSSc as tryptophan C5‐prenyltransferases, and 6‐DMATSSa and 6‐DMATSSv as C6‐prenyltransferases) and one L‐tyrosine prenyltransferase with a tryptophan C7‐prenyltransferase activity was investigated in the presence of two unnatural alkyl donors (methylallyl and 2‐pentenyl diphosphate) and one benzyl donor (benzyl diphosphate). Detailed biochemical investigations revealed the acceptance of these dimethylallyl diphosphate (DMAPP) analogues by all tested enzymes with different relative activities. Enzyme products with the allyl or benzyl moiety attached to different positions were identified in the reaction mixtures, whereby C‐6 alkylated or benzylated L‐tryptophan was found as one of the main products. This observation demonstrates a preference of the five prenyltransferases toward C‐6 of the indole ring in the presence of unnatural DMAPP derivatives. Molecular dynamics simulation experiments with a homologous model of 5‐DMATS explained well its reactions with methylallyl and 2‐pentenyl diphosphate. Furthermore this study expands significantly the potential usage of tryptophan prenylating enzymes as biocatalysts for Friedel–Crafts alkylation.magnified image
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.