This article presents the test results for the physical and mechanical properties and fracture toughness of polymer-modified hydraulically-bound mixtures (HBM) produced with Portland cement for road base layers. The modifier used was a redispersible polymer powder (RPP) based on a vinyl ethylene acetate (EVA) copolymer obtained by spray drying. A three-level full factorial design with two factors was applied to determine the contents of Portland cement and polymer powder in the cement-bound mixture (CBM). Both Portland cement and polymer powder were added at three levels: 0%, 2%, and 4%. The assessment included basic physical properties (water absorption, density, and bulk density) and mechanical properties (stiffness modulus, axial compressive strength, and indirect tensile strength) of the CBM. Particular attention was paid to the assessment of fracture toughness in the semi-circular bending test. The results of the research show that polymer powder positively influenced the mechanical properties of CBM by improving its cohesion while maintaining its stiffness. Another benefit coming from the use of polymer powder was the CBM’s increased resistance to cracking, which is the desired characteristic from the perspective of pavement durability.
The paper presents the results of tests of the impact of hydraulic and bituminous binders on the properties of the cold-recycled mixture (CRM). The composition of the cold-recycled mixture includes two types of different binders, i.e., bituminous binder in the form of foamed bitumen and bitumen emulsion, as well as Portland cement (CEM I 32.5R) and hydraulic binder. The hydraulic binder was produced by mixing three base ingredients in the following ratio: 40% CEM I 32.5R; 20% Ca(OH)2 and 40% CBD (cement bypass dust). The cold-recycled mixtures were produced under industrial conditions on a test section. The prepared CRM with bitumen emulsion (MCE) and foamed bitumen (MCAS) was collected from the test section and compacted under laboratory conditions. The impact of the type and kind of the binder was assessed in terms of physical properties, mechanical properties and deformation modulus (bearing capacity of subbase) of the recycled base course after 1, 7 and 28 days. It was found that the use of hydraulic binder in the recycled base course, regardless of the type of bituminous binder, reduced cohesion without reducing the remaining parameters.
The research was aimed at assessing the effect of the redispersible polymer powder on the fracture resistance of a subbase made of a mineral–cement mixture with a bitumen emulsion. The test was performed at two temperatures, i.e., 0 °C and 20 °C. The prepared mixtures differed in the content of cement, asphalt emulsion, and polymer modifier. Cement and redispersible polymer powder were dosed in 1.5% steps from 0.5% to 3.5% while the amount of bitumen emulsion ranged from 0.0% to 5.0%. The SCB (semi-circular bending) tests carried out in the laboratory showed the dependence of the influence of the amount of binder and polymer modifier on the fracture resistance of the recycled subbase. Mixes containing a polymer modifier in their composition are characterized by a much higher resistance to cracking than traditional mineral–cement–emulsion mixtures. An example is the doubling of the framework’s fracture toughness (KIC) when the amount of the polymer modifier is increased from 0.5% to 2.0% with a constant cement content of 0.5%. The obtained results (KIC) in this case were 2.90 and 5.81. The key is the right ratio of polymer powder and cement in the base composition.
The subject of the research presented in the article is the assessment of the effect of redispersible polymer powder (RPP) on water and frost resistance of a cold-recycled mixture with bitumen emulsion (BE-CRM). The article presents the results of research on the influence of polymer powder EVA based on polymer (polyethylene-co-vinyl acetate) on the properties of BE-RCM. The impact analysis was determined using the assumptions of the Box-Behnken experiment plan in which three components are controlled. In this case, the variables were the content of: polymer, cement and asphalt emulsion. All ingredients were dosed with a step of 1.5% of the percentage share in the mixture composition. Polymer and Portland cement in an amount of 0.5% to 3.5%. On the other hand, the pure asphalt originating from the asphalt emulsion was 0.0%, 1.5% and 3.0%, respectively. The scope of the tests included the determination of: mixture density, void content (Vm), water absorption (nw), intermediate tensile strength (ITS), to water (TSR) as well as water and frost according to AASHTO T283.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.