Natural xanthones are a large group of compounds from which promising anticancer properties could be further developed by chemical modifications. This study aimed to investigate the influence of four novel xanthone derivatives based on a naturally occurring xanthone skeleton on the invasiveness of colon cancer cells in vitro. First, the concentrations required to inhibit growth of three colorectal cancer cell lines to 50% (GI50) of all the studied compounds, as well as the natural xanthones used as a reference (gambogic acid and α-mangostin), have been established (MTS reduction test). Next, the assays determining several aspects of the GI25 xanthones influence on colorectal cancer cells, including cytotoxicity, migration and invasion potential, interaction with extracellular matrix and endothelial cells, as well as expression of selected invasiveness related genes have been performed. Our results demonstrate that these novel xanthone derivatives impair colorectal cancer proliferation, motility, adhesion to extracellular matrix and to endothelial cells, and also induce apoptosis and cell death. Moreover, their activity is comparable to cisplatin and 5-fluorouracil, used as reference compounds. Conducted research indicates our compounds for further research and development as novel drugs in colorectal cancer treatment.
In recent years, fibrin has been successfully used as a polymer drug delivery carrier. Passive properties of fibrin provide parenteral and local delivery of drug substances in controlled and prolonged manner and also tissue support, gluing and sealing. Fibrin also has hemostatic and proangiogenic effects. Discs, films, gels, beads and nanoparticles are among the most commonly proposed and used fibrin-based formulations. It is routinely obtained from fibrinogen and thrombin. Fibrin formulation methods are solution casting, dual syringe systems and emulsification. All fibrin formulations become gel after administration and water absorption. Biodegradation and biocompatibility are important advantages of fibrin, which make it possible to implant a formulation without the need to remove the carrier from the body after the drug is released. Fibrin-based drug delivery systems are proposed and applied in the treatment of wounds, infections and cancerous diseases.
Exosomes are a subpopulation of extravascular vesicles with a diameter of 30–150 nm. They are cellular-communication mediators, often reaching very distant organism tissues. Information is transferred by exosomal cargo, composed of a wide variety of macromolecules such as nucleic acids, proteins, and lipids. Exosomes possess natural specific cell targeting properties that are desirable in designing targeted macromolecules (DNA and RNA) and drug delivery systems (doxorubicin, paclitaxel, and taxol). In this context, exosomes can be defined as bio-derived drug transporting and protecting devices for the treatment of bacterial (toxoplasmosis and salmonellosis), viral (AIDS and hepatitis B), and cancer (lung, pancreatic, colon, brain, and breast) diseases. Extensive research proves that exosomes’ natural cargo can double-act, both increasing and decreasing the disease severity. In this case, the exosomes need to be prepared, namely, their origin and their cargo need to be screened and known. Thus, appropriate methods for intact and price-effective exosome isolation are needed with further exosome properties description. Among many utilized isolation methods, the most common are ultracentrifugation, polymer-based precipitation, and affinity precipitation-isolation systems, but novel microfluidic methods compromising high efficacy and purity are being developed. In this review, we state the current knowledge and trends in exosome-based drug delivery systems.
In this work, we aimed to determine the role of the mechanical, structural, and thermal properties of poly(l-lactide-co-glycolide-co-trimethylene carbonate) (P(l-LA:GA:TMC)) with shape memory in the formulation of implantable and biodegradable rods with aripiprazole (ARP). Hot melt extrusion (HME) and electron beam (EB) irradiation were applied in the formulation process of blank rods and rods with ARP. Rod degradation was carried out in a PBS solution. HPLC; NMR; DSC; compression and tensile tests; molecular weight (Mn); water uptake (WU); and weight loss (WL) analyses; and SEM were used in this study. HME and EB irradiation did not influence the structure of ARP. The mechanical tests indicated that the rods may be safely implanted using a pre-filled syringe. During degradation, no unfavorable changes in terpolymer content were observed. A decrease in the glass transition temperature and the Mn, and an increase in the WU and the WL were revealed. The loading of ARP and EB irradiation induced earlier pore formation and more intense WU and WL changes. ARP was released in a tri-phasic model with the lag phase; therefore, the proposed formulation may be administered as a delayed-release system. EB irradiation was found to accelerate ARP release.
Latanoprost (LTP) is a prostaglandin F2α analog used to lower intraocular pressure in glaucoma treatment administered daily as eye drops. In this study, a universal model based on poly(l-lactide-co-glycolide-co-trimethylene carbonate) with shape memory was proposed for the development of a solid biodegradable formulation with prolonged release administered intraconjunctivally, intravitreally, subconjunctivally, and subcutaneously. Solution casting and electron beam (EB) irradiation were applied to the matrix formulation. The properties of the native matrix and matrices degraded in a PBS buffer (pH 7.4) were monitored by NMR, DSC, GPC, and SEM. Water uptake (WU) and weight loss (WL) were also analyzed. LTP was released over 113 days in a tri-phasic and sigmoidal pattern without a burst effect and with a relatively long second release phase, in which changes were observed in the glass transition temperature, molecular weight (Mn), WU, and WL. EB irradiation decreased the initial Mn, increased WU, and accelerated LTP release with a shortened lag phase. This provides the opportunity to partially eliminate the use of drops at the start of treatment. SEM observations indicated that surface erosion is the prevalent degradation mechanism. The proposed model is an interesting solution during a preliminary study to develop final medicinal products that provide high adherence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.