Fluoroquinolone antibiotics induce cytotoxicity in various cancer cell lines and may therefore represent a potentially important source of novel anticancer agents. The aim of the present study was to examine the effect of ciprofloxacin on the viability, redox balance, apoptosis, expression of p53, Bax and Bcl-2, cell cycle distribution and DNA fragmentation of triple-negative MDA-MB-231 breast cancer cells. The results of the present study demonstrated that ciprofloxacin decreases cell viability in a dose- and time-dependent manner. The half maximal inhibitory concentration values of ciprofloxacin in MDA-MB-231 cells following treatment for 24, 48 and 72 h were 0.83, 0.14 and 0.03 µmol/ml, respectively. Furthermore, it was demonstrated that ciprofloxacin altered the redox signaling pathway, as determined by intracellular glutathione depletion. The results of Annexin V/propidium iodide staining revealed that ciprofloxacin triggered the apoptosis of MDA-MB-231 cells. Furthermore, cipfloxacin treatment stimulated the loss of the mitochondrial transmembrane potential via the Bax/Bcl-2-dependent pathway, thus inducing apoptosis. Ciprofloxacin induced cell cycle arrest at the S-phase; therefore it was hypothesized that ciprofloxacin inhibits topoisomerase II. Oligonucleosomal DNA fragmentation and the elevation of p53 expression were observed in the present study, indicating that this late-apoptotic event may be mediated by the p53-dependent pathway. Therefore, the results of the current study provide important molecular data concerning the cellular cascade, which may explain the cytotoxicity induced by ciprofloxacin in human triple-negative breast cancer cells, thus providing a novel insight into the therapeutic properties of this drug.
The obtained results for COLO829 melanoma cells were compared with data for normal dark pigmented melanocytes and the use of ciprofloxacin as a potential anticancer drug for the treatment of melanoma in vivo was considered.
Photosensitivity is one of the most common cutaneous adverse drug reactions. There are two types of drug-induced photosensitivity: photoallergy and phototoxicity. Currently, the number of photosensitization cases is constantly increasing due to excessive exposure to sunlight, the aesthetic value of a tan, and the increasing number of photosensitizing substances in food, dietary supplements, and pharmaceutical and cosmetic products. The risk of photosensitivity reactions relates to several hundred externally and systemically administered drugs, including nonsteroidal anti-inflammatory, cardiovascular, psychotropic, antimicrobial, antihyperlipidemic, and antineoplastic drugs. Photosensitivity reactions often lead to hospitalization, additional treatment, medical management, decrease in patient’s comfort, and the limitations of drug usage. Mechanisms of drug-induced photosensitivity are complex and are observed at a cellular, molecular, and biochemical level. Photoexcitation and photoconversion of drugs trigger multidirectional biological reactions, including oxidative stress, inflammation, and changes in melanin synthesis. These effects contribute to the appearance of the following symptoms: erythema, swelling, blisters, exudation, peeling, burning, itching, and hyperpigmentation of the skin. This article reviews in detail the chemical and biological basis of drug-induced photosensitivity. The following factors are considered: the chemical properties, the influence of individual ranges of sunlight, the presence of melanin biopolymers, and the defense mechanisms of particular types of tested cells.
Phototoxicity of fluoroquinolones is connected with oxidative stress induction. Lomefloxacin (8-halogenated derivative) is considered the most phototoxic fluoroquinolone and moxifloxacin (8-methoxy derivative) the least. Melanin pigment may protect cells from oxidative damage. On the other hand, fluoroquinolone–melanin binding may lead to accumulation of drugs and increase their toxicity to skin. The study aimed to examine the antioxidant defense system status in normal melanocytes treated with lomefloxacin and moxifloxacin and exposed to UV-A radiation. The obtained results demonstrated that UV-A radiation enhanced only the lomefloxacin-induced cytotoxic effect in tested cells. It was found that fluoroquinolones alone and with UV-A radiation decreased superoxide dismutase (SOD) activity and SOD1 expression. UV-A radiation enhanced the impact of moxifloxacin on hydrogen peroxide-scavenging enzymes. In turn, lomefloxacin alone increased the activity and the expression of catalase (CAT) and glutathione peroxidase (GPx), whereas UV-A radiation significantly modified the effects of drugs on these enzymes. Taken together, both analyzed fluoroquinolones induced oxidative stress in melanocytes, however, the molecular and biochemical studies indicated the miscellaneous mechanisms for the tested drugs. The variability in phototoxic potential between lomefloxacin and moxifloxacin may result from different effects on the antioxidant enzymes.
Vitamin B12 deficiency causes significant changes in cellular metabolism leading to various clinical symptoms, such as hematological, psychiatric, and neurological disorders. We hypothesize that skin pigmentation disorders may be a diagnostically important manifestation of vitamin B12 deficiency, however the cellular and molecular mechanisms underlying these effects remain unknown. The aim of this study was to examine the effect of vitamin B12 deficiency on melanocytes homeostasis. Hypocobalaminemia in vitro model was developed by treating epidermal melanocytes with synthesized vitamin B12 antagonist—hydroxycobalamin(c-lactam). The cells were examined using immunoenzymatic, spectrophotometric, and fluorimetric assays as well as image cytometry. Significant melanogenesis stimulation—the increase of relative melanin content and tyrosinase activity up to 131% and 135%, respectively—has been indicated. Cobalamin-deficient cells displayed the elevation (by 120%) in reactive oxygen species level. Moreover, the redox status imbalance was stated. The study provided a scientific evidence for melanocytes homeostasis disturbance under hypocobalaminemia, thus indicating a significant element of the hyperpigmentation mechanism due to vitamin B12 deficiency. Furthermore, the implication between pigmentary and hematological and/or neuropsychiatric symptoms in cobalamin-deficient patients may be an important issue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.