Neonicotinoid insecticides are increasingly recognized for their role as information disruptors by modifying the chemical communication system of insects and therefore decreasing the chances of reproduction in target insects. However, data from spiders are lacking. In the present study, we tested the responses of males of a common agrobiont spider, Pardosa agrestis, to the application of field-realistic concentration of acetamiprid, which was formulated as Mospilan, and trace amounts of thiacloprid, which was formulated as Biscaya. We applied fresh or 24-h-old residues of Mospilan or Biscaya to the males just prior to the experiment or treated only the surface of a tunnel containing female draglines. We evaluated the ability of the males to recognize female cues from female dragline silk in a Y-maze. The field-realistic, sublethal doses of Mospilan altered pheromone-guided behavior. The choice of the tunnel with female draglines by males was hampered by tarsal treatment of the males with 24 h-old residues of Mospilan. The mating dance display was commonly initiated in control males that came into contact with female draglines and was suppressed by the Mospilan treatments in all three experimental settings. Some males only initiated the mating dance but did not manage to complete it; this was particularly true for males that were treated tarsally with fresh Mospilan residues, as none of these males managed to complete the mating dance. All three experimental settings with Mospilan decreased the frequency of males that managed to both select the tunnel with female draglines and complete the mating dance. The responses to the low-dose Biscaya were much milder and the study was not sufficiently powered to confirm the effects of Biscaya; however, the surprisingly observed trends in responses to very low Biscaya concentrations call for further analyses of long-term effects of trace amounts of neonicotinoids on the pheromone-guided behavior of spiders. These are the first conclusive data regarding the effects of commercially available formulations of neonicotinoid insecticides on the intraspecific chemical communication of spiders.
Insects in the pupal stage are vulnerable to various predators because the pupa is immobile. The pupas of parasitoid ichneumonid wasps (Ichneumonidae) associated with spider hosts have evolved two lines of defense against predators, namely a cocoon spun by the parasitoid larva and a web provided by the spider host. The web is derived from a normal or modified spider web built by the spider under manipulation by the penultimate instar of the parasitoid wasp. In laboratory experiments, we tested the efficacy of these two defensive lines using six potential predators with two different types of mouthparts coming from three foraging guilds. The presence of the cocoon significantly reduced predation. Scavengers with chewing mouthparts, e.g., cockroaches and crickets, attacked and consumed pupas within both sparse and strong cocoon walls. Scavengers with piercing mouthparts were able to attack pupas in cocoons with a sparse wall, but not with a strong wall. Collectors and true predators showed no interest in cocoons. The presence of a web increased pupa protection by up to 80% when the web was on the ground and by up to 95% when the web was in the air. Only scavengers with chewing mouthparts were able to reach and consume pupas sheltered by the web. We provide the first evidence of how the two lines of defense contribute to parasitoid defense during the pupal stage.
The spatial distribution of parasitoids is closely linked to the distribution and ecological requirements of their hosts. Several studies have documented changes in the fauna composition of parasitoids in response to elevation, but data on parasitoids associated with spiders are missing. The koinobiont ichneumonid wasp Zatypota anomala is strictly specialised on spiders of the genus Dictyna (Dictynidae) in Europe. We examined the distribution of spiders of the family Dictynidae in forest ecotones in central Europe across a broad elevation gradient (110–1466 m a.s.l.). We checked the spiders for parasitism by Z. anomala. It was most abundant at the mid-elevations (median 712 m a.s.l., range 179–870 m a.s.l.). We identified four dictynid spider species as Z. anomala hosts. These were Dictyna arundinacea, Dictyna uncinata, Nigma flavescens, and Nigma walckenaeri. All four species and the genus Nigma were recorded as hosts for the first time. The parasitoids strongly preferred juvenile instars of their hosts. The body length differed between parasitised Dictyna and Nigma spiders (medians: 1.95 mm and 2.55 mm, respectively). The distribution of Dictyna and Nigma spiders overlapped along the elevation gradient, but parasitism incidence significantly differed between spider genera along the elevation gradient. Nigma was parasitized at lower elevations between 179–254 m a.s.l. and Dictyna at higher elevations between 361–870 m a.s.l. The phenology of Z. anomala is closely tied to the univoltine life strategy of its host spiders. The parasitoid female oviposits in autumn, and its offspring overwinter as larvae on the host, reach adulthood during spring, and pass the summer as an adult.
Parasitoids are significant ecological elements of terrestrial food webs and have evolved within seven insect orders. Interestingly, however, associations with spiders as hosts have evolved only in two insect orders, Diptera and Hymenoptera. Here, we summarize various aspects of host utilization by dipteran flies with an emphasis on associations with spiders. Our synthesis reveals that spider flies (family Acroceridae) have evolved a unique life strategy among all the parasitoid taxa associated with spiders, in which koinobiont small-headed flies utilize an indirect oviposition strategy. This indirect oviposition in spider flies is inherited from Nemestrinimorpha ancestors which appeared in the Late Triassic and is characterized by the evolution of planidial larvae. Further, we discuss the advantages and disadvantages of indirect oviposition in spider flies. On the one hand, indirect oviposition allows the fly to avoid contact/wrestling with spider hosts. On the other hand, larval survival is low because the planidium must actively seek out and infect a suitable host individually. The risk of failure to find a suitable spider host is offset by the fly’s extremely high fecundity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.