The properties of most III–V semiconductor materials in the wurtzite structure are not known because of their metastable character. However, recent advances in the growth of III–V wurtzite nanorods open new perspectives for applications. In this work, we present a systematic computational study of bulk wurtzite III–V semiconductors, using predictive ab initio methods, to provide a necessary base knowledge for studying the nanostructures. The most important physical properties of bulk systems, i.e., lattice constants, elasticity, spontaneous polarization, piezoelectricity, band structures, deformation potentials, and band offsets, have been studied. Comparison with the available experimental and theoretical data shows the high credibility of our results. Moreover, we provide a complete set of parameters for a six-band [Formula: see text] model, which is widely used for simulating devices based on semiconductor heterostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.