This study investigates the hydrate inhibition performance of monoethylene glycol (MEG) with poly(vinylcaprolactam) (PVCap) for retarding the hydrate onset as well as preventing the agglomeration of hydrate particles. A high-pressure autoclave was used to determine the hydrate onset time, subcooling temperature, hydrate fraction in the liquid phase, and torque changes during hydrate formation in pure water, 0.2 wt % PVCap solution, and 20 and 30 wt % MEG solutions. In comparison to water with no inhibitors, the addition of PVCap delays the hydrate onset time but cannot reduce the hydrate fraction, leading to a sharp increase in torque. The 20 and 30 wt % MEG solutions also delay the hydrate onset time slightly and reduce the hydrate fraction to 0.15. The addition of 0.2 wt % PVCap to the 20 wt % MEG solution, however, delays the hydrate onset time substantially, and the hydrate fraction was less than 0.19. The torque changes were negligible during the hydrate formation, suggesting the homogeneous dispersion of hydrate particles in the liquid phase. The well-dispersed hydrate particles do not agglomerate or deposit under stirring. Moreover, when 0.2 wt % PVCap was added to the 30 wt % MEG solution, no hydrate formation was observed for at least 24 h. These results suggest that mixing of MEG with a small amount of PVCap in underinhibited conditions will induce the synergistic inhibition of hydrate by delaying the hydrate onset time as well as preventing the agglomeration and deposition of hydrate particles. Decreasing the hydrate fraction in the liquid phase might be the reason for negligible torque changes during the hydrate formation in the 0.2 wt % PVCap and 20 wt % MEG solution. Simple structure II was confirmed by in situ Raman spectroscopy for the synergistic inhibition system, while coexisting structures I and II are observed in 0.2 wt % PVCap solution.
This study investigates the effect of gas hydrate formation on the stability of dry water (DW) particles when they are exposed to high pressure methane at low temperatures. The DW particles are prepared by mixing water with hydrophobic silica nanoparticles at high speed to form a water-in-air inverse foam. A high pressure autoclave was used to determine the hydrate equilibrium conditions and formation characteristics including hydrate onset time, subcooling temperature, and initial growth rate. In comparison to bulk water, the equilibrium conditions for methane hydrate are shifted to higher temperatures and low pressures, suggesting that the silica nanoparticles promote the hydrate equilibrium conditions. The surface-to-volume ratio between the gas and the water encapsulated by the silica nanoparticles is increased in comparison to bulk water which enhances the kinetics of methane hydrate formation without the need for vigorous mixing. However, after multiple cycles of hydrate formation and dissociation, the hydrate fraction decreases exponentially and approaches 0.22, which is approximately 20% of the hydrate fraction formed during the first cycle. From the data presented, it was concluded that the hydrates form a shell on the DW particles. Dissociation of this hydrate-shell generates a free water phase that cannot be reabsorbed into the DW particles which causes the exponential reduction in the hydrate fraction. PXRD confirms that structure I methane hydrate is formed with a lattice parameter of 1.1827(1) nm. Raman spectroscopy confirms that the hydrate-shell covers the DW particles as evidenced by the presence of two peaks for methane at 2901 and 2913 cm −1 , which indicates that the methane exists in large and small cages, respectively. These results suggest that the particles are covered with a hydrate-shell when methane hydrates are formed. Therefore, the hydrophobic silica is rearranging during hydrate formation, and after dissociation of the hydrate, free water is expelled. This free water cannot absorb back into the particles due to the hydrophobic surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.