With the breadth of applications and analysis performed over the last few decades, it would not be an exaggeration to call piezoelectric materials “the top of the crop” of smart materials. Piezoelectric materials have emerged as the most researched materials for practical applications among the numerous smart materials. They owe it to a few main reasons, including low cost, high bandwidth of service, availability in a variety of formats, and ease of handling and execution. Several authors have used piezoelectric materials as sensors and actuators to effectively control structural vibrations, noise, and active control, as well as for structural health monitoring, over the last three decades. These studies cover a wide range of engineering disciplines, from vast space systems to aerospace, automotive, civil, and biomedical engineering. Therefore, in this review, a study has been reported on piezoelectric materials and their advantages in engineering fields with fundamental modeling and applications. Next, the new approaches and hypotheses suggested by different scholars are also explored for control/repair methods and the structural health monitoring of engineering structures. Lastly, the challenges and opportunities has been discussed based on the exhaustive literature studies for future work. As a result, this review can serve as a guideline for the researchers who want to use piezoelectric materials for engineering structures.
In the last three decades, smart materials have become popular. The piezoelectric materials have shown key characteristics for engineering applications, such as in sensors and actuators for industrial use. Because of their excellent mechanical-to-electrical and vice versa energy conversion properties, piezoelectric materials with high piezoelectric charge and voltage coefficient have been tested in renewable energy applications. The fundamental component of the energy harvester is the piezoelectric material, which, when subjected to mechanical vibrations or applied stress, induces the displaced ions in the material and results in a net electric charge due to the dipole moment of the unit cell. This phenomenon builds an electric potential across the material. In this review article, a detailed study focused on the piezoelectric energy harvesters (PEH’s) is reported. In addition, the fundamental idea about piezoelectric materials, along with their modeling for various applications, are detailed systematically. Then a summary of previous studies based on PEH’s other applications is listed, considering the technical aspects and methodologies. A discussion has been provided as a critical review of current challenges in this field. As a result, this review can provide a guideline for the scholars who want to use PEH’s for their research.
The performance of water as a heat transfer medium in numerous applications is limited by its effective thermal conductivity. In order to improve the thermal conductivity of water, herein we report the development and thermophysical characterization of a novel metal-metaloxide-carbon based ternary hybrid nanoparticles (THNp), GO-TiO2-Ag and the rGO-TiO2-Ag. The results indicate that the graphene oxide and reduced graphene oxide based ternary hybrid nanoparticles dispersed in water enhance its thermal conductivity by 66% and 83%, respectively, even at very low concentrations. Mechanisms contributing to this significant enhancement are discussed. The experimental thermal conductivity is plotted against the existing empirical hybrid thermal conductivity correlations. We found that those correlations are not suitable for the metal-metaloxide-carbon combinations, calling for the developing a new thermal conductivity models. The rheological measurements of the nanofluids display non-Newtonian behavior, and the viscosity reduces with the increase in temperature. Such behavior is possibly due to the non-uniform shapes of the ternary hybrid nanoparticles.
Acanthamoeba are widely distributed in the environment and are known to cause blinding keratitis and brain infections with greater than 90% mortality rate. Currently, polymerase chain reaction (PCR) is a highly sensitive and promising technique in Acanthamoeba detection. Remarkably, the rate of heating–cooling and convective heat transfer of the PCR tube is limited by low thermal conductivity of the reagents mixture. The addition of nanoparticles to the reaction has been an interesting approach that could augment the thermal conductivity of the mixture and subsequently enhance heat transfer through the PCR tube. Here, we have developed hexagonal boron nitride (hBN) nanoparticle-based PCR assay for the rapid detection of Acanthamoeba to amplify DNA from low amoeba cell density. As low as 1 × 10−4 wt % was determined as the optimum concentration of hBN nanoparticles, which increased Acanthamoeba DNA yield up to ~16%. Further, it was able to reduce PCR temperature that led to a ~2.0-fold increase in Acanthamoeba DNA yield at an improved PCR specificity at 46.2 °C low annealing temperature. hBN nanoparticles further reduced standard PCR step time by 10 min and cycles by eight; thus, enhancing Acanthamoeba detection rapidly. Enhancement of Acanthamoeba PCR DNA yield is possibly due to the high adsorption affinity of hBN nanoparticles to purine (Guanine—G) due to the higher thermal conductivity achieved in the PCR mixture due to the addition of hBN. Although further research is needed to demonstrate these findings in clinical application, we propose that the interfacial layers, Brownian motion, and percolation network contribute to the enhanced thermal conductivity effect.
The performance of water as a heat transfer medium in numerous applications is limited by its effective thermal conductivity. To improve the thermal conductivity of water, herein, we report the development and thermophysical characterization of novel metal-metal-oxide-carbon-based ternary-hybrid nanoparticles (THNp) GO-TiO2-Ag and rGO-TiO2-Ag. The results indicate that the graphene oxide- and reduced graphene oxide-based ternary-hybrid nanoparticles dispersed in water enhance the base fluid (H2O) thermal conductivity by 66% and 83%, respectively, even at very low concentrations. Mechanisms contributing to this significant enhancement are discussed. The experimental thermal conductivity is plotted against the existing empirical hybrid thermal conductivity correlations. We found that those correlations are not suitable for the metal-metal-oxide-carbon combinations, calling for new thermal conductivity models. Furthermore, the rheological measurements of the nanofluids display non-Newtonian behavior, and the viscosity reduces with the increase in temperature. Such behavior is possibly due to the non-uniform shapes of the ternary-hybrid nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.