Despite the effectiveness of renin-angiotensin blockade in retarding diabetic nephropathy progression, a considerable number of patients still develop end-stage renal disease. The present investigation aims to evaluate the protective potential of FPS-ZM1, a selective inhibitor of receptor for advanced glycation end products (RAGE), alone and in combination with valsartan, an angiotensin receptor blocker, against glomerular injury parameters in streptozotocin-induced diabetic rats. FPS-ZM1 at 1 mg/kg (i.p.), valsartan at 100 mg/kg (p.o.), and their combination were administered for 4 weeks, starting 2 months after diabetes induction in rats. Tests for kidney function, glomerular filtration barrier, and podocyte slit diaphragm integrities were performed. Combined FPS-ZM1/valsartan attenuated diabetes-induced elevations in renal levels of RAGE and phosphorylated NF-κB p65 subunit. It ameliorated glomerular injury due to diabetes by increasing glomerular nephrin and synaptopodin expressions, mitigating renal integrin-linked kinase (ILK) levels, and lowering urinary albumin, collagen type IV, and podocin excretions. FPS-ZM1 also improved renal function as demonstrated by decreasing levels of serum cystatin C. Additionally, the combination also alleviated indices of renal inflammation as revealed by decreased renal monocyte chemoattractant protein 1 (MCP-1) and chemokine (C-X-C motif) ligand 12 (CXCL12) expressions, F4/80-positive macrophages, glomerular TUNEL-positive cells, and urinary alpha-1-acid glycoprotein (AGP) levels. These findings underline the benefits of FPS-ZM1 added to valsartan in alleviating renal glomerular injury evoked by diabetes in streptozotocin rats and suggest FPS-ZM1 as a new potential adjunct to the conventional renin-angiotensin blockade.
Background: Microbiological cultures are the mainstay of the diagnosis of tuberculosis (TB).False positive TB results lead to significant unnecessary therapeutic and economic burden and are frequently caused by laboratory cross-contamination. The aim of this meta-analysis was to quantify the prevalence of laboratory cross-contamination.Methods: Through a systematic review of five electronic databases, we identified studies reporting rates of laboratory cross-contamination, confirmed by molecular techniques in TB cultures. We evaluated the quality of the identified studies using the National Institute of Health (NIH) Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies, and conducted a meta-analysis using standard methodology recommended by the Cochrane Collaboration.Results: Based on 31 eligible studies evaluating 29,839 TB cultures, we found that 2% (95% confidence intervals [CI]: 1-2%) of all positive TB cultures represent false positive results secondary to laboratory cross-contamination. More importantly, we evaluated the rate of laboratory cross-contamination in cases where a single positive TB culture was available in addition to at least one negative TB culture, and we found a rate of 15% (95%CI: 6-33%). Moreover, 9.2% (91/990) of all patients with a preliminary diagnosis of TB had false-positive results and received unnecessary and potentially harmful treatments.Conclusions: Our results highlight a remarkably high prevalence of false positive TB results as a result of laboratory cross-contamination, especially in single-positive TB cultures, leading to the administration of unnecessary, harmful treatments. The need for the adoption of strict technical standards for mycobacterial cultures cannot be overstated.
Purpose: This study was aimed to evaluate the site-specific drug delivery of 5-FU with chitosan (CS) as a carrier and quercetin (Qu) against induced colon cancer in Wistar rats. Methods: Cross-linked CS-Qu nanoparticles (NPs) were prepared by ionotropic gelation method. Physicochemical characterization of NPs was performed by Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), in vitro drug release, and drug loading efficiency (LE). 1, 2-Dimethylhydrazine (DMH) and dextran sulfate sodium (DSS) were applied to induce adenocarcinoma tumors on inbred male Wistar rats’ colon. The treatment group of rats was administered through enema with NPs dispersion. Hematoxylin and eosin staining were performed to the histopathological examination of tumors. Results: Zeta potential and particle size for NPs were +53.5 ± 5 mV and 179 ± 28 nm, respectively. About 96% Qu LE was obtained with a maximum release of 5.63 ±1.59% and 4.62 ± 1.33% after 24 hours in PB solution with pH values of 6 and 7.4, respectively. The numbers of 8 to 21 tumors were observed in all rats administered with DMH and DSS. Significantly decreasing of microvascular density and mitosis count was detected in the treatment group in comparison with cancerous group (P = 0.032 for the former compared to P = 0.016 for the later), respectively. Furthermore, the treatment group showed a high apoptosis rate (P = 0.038). Conclusion: The developed Qu-loaded CS NPs were good candidates for site-specific and sustained drug release in enema treatment. Decreasing of microvascular density and mitosis count, along with increasing the apoptosis percent in the treatment group proved that the NPs could have promising results in site-specific and sustained drug delivery against colorectal cancer.
The recent pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19) has introduced itself into the human population in the 21st century after the coronavirus diseases SARS-CoV and Middle East respiratory syndrome (MERS-CoV). Major investigations are underway worldwide in the search for pharmaceutical interventions for COVID-19 and many agents are administered in off-label routes. Several cases are under study to check or restrict clinical manifestations of COVID-19. According to the fact that the efficacy of some micro-nutrients like vitamins is proven to treat or prevent infectious diseases because of their antimicrobial and immunomodulatory activity, the potential role of vitamins in the COVID-19 treatment or prevention must be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.