During the Late Cretaceous the northeastern margin of the Arabian plate (Zagros–Fars Area) was characterized by significant variations in sedimentary facies, sedimentation patterns and accommodation space, and by shifting depocentres. A succession of events recording the evolution of the region from a passive to an active margin is documented by the study of eight outcrop sections and one well. This new study uses new age dating (benthic and planktonic foraminifers, nannoplankton and radiolarian biozonations and strontium isotope stratigraphy). The new observations provide a detailed overview of the response of the sedimentary system to changes in the tectonic regime related to obduction processes. These changes are very well shown in regional cross-sections and palaeogeographical maps. Three tectono-sedimentary phases are recognized indicating the evolution from a passive to an active margin: Phase I (Late Albian to Cenomanian, before obduction) comprises three depositional third-order sequences comparable with those of the other parts of the Zagros and Arabian plate. This interval is composed of shallow-water platform carbonates and intra-shelf basins. The platform facies consists of rudist and benthic foraminifer-dominated assemblages, whereas the intra-shelf basins contain an ‘Oligostegina’ facies. Eustatic sea-level variations and local differential subsidence controlled sediment deposition during this phase. Phase II (Turonian to Late Campanian, obduction phase) is characterized by major changes in depositional environments and sedimentary facies, as a result of obduction and foreland basin creation. It consists of pelagic and platform carbonates in the south, and a foreland basin with obducted radiolarites, ophiolitic and olistoliths or thrust slices in the north. During this phase, large volumes of turbidites and gravity flows with olistoliths were shed from both the SW and NE into the foreland basin. The age of the tectonic slices increases upward through the section, from Early Cretaceous at the base to Permian at the top. Based on various dating methods used on the far-travelled sediments, the depositional age of the radiolarites can be attributed to the Albian–Cenomanian, whereas the planktonic foraminifers are of Santonian to Campanian age. Phase III (Late Campanian to Maastrichtian, after obduction) shows the development of rudist-dominated carbonates in the NE prograding onto the deep basinal facies in the centre of study area. In the extreme NE no sediments of this age have been recorded, suggesting uplift at that time.
Jurassic succession has resulted in prolific oil and gas reservoirs in southwest Iran. In order to geochemically investigate the Jurassic petroleum system and assess the source rock of these hydrocarbons, 32 source rock samples (from well cutting and surface section) and 4 condensate samples were analysed using geochemical approaches. Rock-Eval pyrolysis and vitrinite reflectance measurement were done on rock samples. Then, condensate samples and source rock extracts were subjected to gas chromatography, gas chromatography-mass spectrometry and isotopic analyses in order to establish oil-oil and oil-source rock correlation. The hydrocarbon generation prediction was then confirmed by petroleum system modelling. The results indicated that the middle Jurassic Sargelu Formation with average total organic carbon (TOC) and hydrogen index values of 3.8% and 600 mg HC/g TOC, respectively, can be classified as good to excellent source rock with kerogen of type II. The maturity indicators revealed late oil to wet gas generation window for the Jurassic Sargelu Formation. Biomarker parameters showed marine carbonate source rock with advanced level of thermal maturity for the source rock of the condensates. Furthermore, there were good correlations between Jurassic Sargelu Formation and the studied oil and condensate samples which proved the Sargelu Formation as the main source rock of the Jurassic petroleum system in the study area. The basin modelling results also confirmed late oil to wet gas window maturity for the Sargelu Formation enabling it as a source rock for generating gas condensate accumulation in southwest Iran. The hydrocarbon generation from Sargelu Formation began in the late Cretaceous and its peak expulsion occurred in the Miocene time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.