Real-world applications often involve imbalanced datasets, which have different distributions of examples across various classes. When building a system that requires a high accuracy, the performance of the classifiers is crucial. However, imbalanced datasets can lead to a poor classification performance and conventional techniques, such as synthetic minority oversampling technique. As a result, this study proposed a balance between the datasets using adversarial learning methods such as generative adversarial networks. The model evaluated the effect of data augmentation on both the balanced and imbalanced datasets. The study evaluated the classification performance on three different datasets and applied data augmentation techniques to generate the synthetic data for the minority class. Before the augmentation, a decision tree was applied to identify the classification accuracy of all three datasets. The obtained classification accuracies were 79.9%, 94.1%, and 72.6%. A decision tree was used to evaluate the performance of the data augmentation, and the results showed that the proposed model achieved an accuracy of 82.7%, 95.7%, and 76% on a highly imbalanced dataset. This study demonstrates the potential of using data augmentation to improve the classification performance in imbalanced datasets.
Green space is any green infrastructure consisting of vegetation. Green space is linked with improving mental and physical health, providing opportunities for social interactions and physical activities, and aiding the environment. The quality of green space refers to the condition of the green space. Past machine learning-based studies have emphasized that littering, lack of maintenance, and dirtiness negatively impact the perceived quality of green space. These methods assess green spaces and their qualities without considering the human perception of green spaces. Domain-based methods, on the other hand, are labour-intensive, time-consuming, and challenging to apply to large-scale areas. This research proposes to build, evaluate, and deploy a machine learning methodology for assessing the quality of green space at a human-perception level using transfer learning on pre-trained models. The results indicated that the developed models achieved high scores across six performance metrics: accuracy, precision, recall, F1-score, Cohen’s Kappa, and Average ROC-AUC. Moreover, the models were evaluated for their file size and inference time to ensure practical implementation and usage. The research also implemented Grad-CAM as means of evaluating the learning performance of the models using heat maps. The best-performing model, ResNet50, achieved 98.98% accuracy, 98.98% precision, 98.98% recall, 99.00% F1-score, a Cohen’s Kappa score of 0.98, and an Average ROC-AUC of 1.00. The ResNet50 model has a relatively moderate file size and was the second quickest to predict. Grad-CAM visualizations show that ResNet50 can precisely identify areas most important for its learning. Finally, the ResNet50 model was deployed on the Streamlit cloud-based platform as an interactive web application.
Body language is a nonverbal communication process consisting of movements, postures, gestures, and expressions of the body or body parts. Body language expresses human feelings, thoughts, and intentions. It also reveals physical and psychological health conditions: abnormal activities inform peoples' health conditions, facial expressions indicate their emotional states and abnormal body actions convey specific diseases' external signs and symptoms. We can observe the importance of studying the body language of people with health conditions through many reports in literature written by healthcare (medical) and artificial intelligence researchers. This paper comprehensively reviews artificial intelligence-based articles that have studied patients' body language. We also conduct different descriptive and exploratory examinations of the findings using data analysis techniques, which provide more authentic domain knowledge of abnormal activities, abnormal body actions, and more precise analysis of methodologies used in machine learning tasks for studying these abnormalities. The paper's results are essential for developing intelligent automated systems that accurately evaluate patients' physical and psychological conditions, precisely identify external signs and symptoms of diseases, and adequately monitor patients' health conditions.
This paper presents an automatic visual inspection of exterior surface defects of oil tanks using unmanned aerial vehicles (UAVs) and image processing with two cascading fuzzy logic algorithms. Corrosion is one of the defects that has a serious effect on the safety of the surface of oil and gas tanks. At present, human inspection, and climbing robots inspection are the dominant approach for rust detection in oil and gas tanks. However, there are many shortcomings to this approach, such as taking longer, high cost, and covering less surface area inspection of the tank. The purpose of this research is to detect the rust in oil tanks by localizing visual inspection technology using UAVs, as well as to develop algorithms to distinguish between defects and noise. The study focuses on two basic aspects of oil tank inspection through the images captured by the UAV, namely, the detection of defects and the distinction between defects and noise. For the former, an image processing algorithm was developed to improve or remove noise, adjust the brightness of the captured image, and extract features to identify defects in oil tanks. Meanwhile, for the latter aspect, a cascading fuzzy logic algorithm and threshold algorithm were developed to distinguish between defects and noise levels and reduce their impact through three stages of processing: The first stage of fuzzy logic aims to distinguish between defects and low noise generated by the appearance of objects on the surface of the tank, such as trees or stairs, and reduce their impact. The second stage aims to distinguish between defects and medium noise generated by shadows or the presence of small objects on the surface of the tank and reduce their impact. The third stage of the thresholding algorithm aims to distinguish between defects and high noise generated by sedimentation on the surface of the tank and reduce its impact. The samples were classified based on the output of the third stage of the threshold process into defective or non-defective samples. The proposed algorithms were tested on 180 samples and the results show its superiority in the inspection and detection of defects with an accuracy of 83%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.