The first part of this paper surveys co-processor approaches for commodity based clusters in general, not only with respect to raw performance, but also in view of their system integration and power consumption. We then extend previous work on a small GPU cluster by exploring the heterogeneous hardware approach for a large-scale system with up to 160 nodes. Starting with a conventional commodity based cluster we leverage the high bandwidth of graphics processing units (GPUs) to increase the overall system bandwidth that is the decisive performance factor in this scenario. Thus, even the addition of low-end, out of date GPUs leads to improvements in both performance-and power-related metrics.
This article explores the coupling of coarse and fine-grained parallelism for Finite Element simulations based on efficient parallel multigrid solvers. The focus lies on both system performance and a minimally invasive integration of hardware acceleration into an existing software package, requiring no changes to application code. Because of their excellent price performance ratio, we demonstrate the viability of our approach by using commodity graphics processors (GPUs) as efficient multigrid preconditioners. We address the issue of limited precision on GPUs by applying a mixed precision, iterative refinement technique. Other restrictions are also handled by a close interplay between the GPU and CPU. From a software perspective, we integrate the GPU solvers into the existing MPI-based Finite Element package by implementing the same interfaces as the CPU solvers, so that for the application programmer they are easily interchangeable. Our results show that we do not compromise any software functionality and gain speedups of two and more for large problems. Equipped with this additional option of hardware acceleration we compare different choices in increasing the performance of a conventional, commodity based cluster by increasing the number of nodes, replacement of nodes by a newer technology generation, and adding powerful graphics cards to the existing nodes.
We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.