Individual differences in the growth and maturation have been shown to impact player performance and development in youth soccer. This study investigated Premier League academy players' experiences of participating in a tournament bio-banded for biological maturation. Players (N = 66) from four professional soccer clubs aged 11 and 14 years and between 85-90% of adult stature participated in a tournament. Players competed in three 11 vs 11 games on a full size pitch with 25-min halves. Sixteen players participated in four 15-min focus groups and were asked to describe their experiences of participating in the bio-banded tournament in comparison to age group competition. All players described their experience as positive and recommended the Premier League integrate bio-banding into the existing games programme. In comparison to age-group competitions, early maturing players described the bio-banded games more physically challenging, and found that they had to adapt their style of play placing a greater emphasis on technique and tactics. Late maturing players considered the games to be less physically challenging, yet appreciated the having more opportunity to use, develop and demonstrate their technical, physical, and psychological competencies. Bio-banding strategies appear to contribute positively towards the holistic development of young soccer players.
There is abundant evidence that a reduction in mitochondrial respiration of plants occurs when atmospheric CO 2 (C a ) is increased. Recent reviews suggest that doubling the present C a will reduce the respiration rate [per unit dry weight (DW)] by 15 to 18%. The effect has two components: an immediate, reversible effect observed in leaves, stems, and roots of plants as well as soil microbes, and an irreversible effect which occurs as a consequence of growth in elevated C a and appears to be specific to C 3 species. The direct effect has been correlated with inhibition of certain respiratory enzymes, namely cytochromec-oxidase and succinate dehydrogenase, and the indirect or acclimation effect may be related to changes in tissue composition. Although no satisfactory mechanisms to explain these effects have been demonstrated, plausible mechanisms have been proposed and await experimental testing. These are carbamylation of proteins and direct inhibition of enzymes of respiration. A reduction of foliar respiration of 15% by doubling present ambient C a would represent 3 Gt of carbon per annum in the global carbon budget.Key-words: acclimation to rising CO 2 ; dark respiration; global carbon cycle; rising CO 2 .Abbreviations: ATP, adenosine triphosphate; K m , MichaelisMenton coefficient; C a , concentration of CO 2 in the air (µmol mol -1 ); NAD, oxidized nicotin adenine dinucleotide; NADH, reduced nicotin adenine dinucleotide; NADP, oxidized nicotin adenine phosphate dinucleotide; NADPH, reduced nicotine adenine phosphate dinucleotide; R, rate of respiration per unit DW [µmol g DW -1 ], Rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase; V c , max , maximum in vivo rate of carboxylation at Rubisco (µmol m -2 s -1 ).
Agricultural production is under increasing pressure by global anthropogenic changes, including rising population, diversion of cereals to biofuels, increased protein demands and climatic extremes. Because of the immediate and dynamic nature of these changes, adaptation measures are urgently needed to ensure both the stability and continued increase of the global food supply. Although potential adaption options often consider regional or sectoral variations of existing risk management (e.g. earlier planting dates, choice of crop), there may be a global-centric strategy for increasing productivity. In spite of the recognition that atmospheric carbon dioxide (CO 2 ) is an essential plant resource that has increased globally by approximately 25 per cent since 1959, efforts to increase the biological conversion of atmospheric CO 2 to stimulate seed yield through crop selection is not generally recognized as an effective adaptation measure. In this review, we challenge that viewpoint through an assessment of existing studies on CO 2 and intraspecific variability to illustrate the potential biological basis for differential plant response among crop lines and demonstrate that while technical hurdles remain, active selection and breeding for CO 2 responsiveness among cereal varieties may provide one of the simplest and direct strategies for increasing global yields and maintaining food security with anthropogenic change.
The heat island effect and the high use of fossil fuels in large city centers are well documented, but by how much fossil fuel consumption is elevating atmospheric CO 2 concentrations and whether elevations in both atmospheric CO 2 and air temperature from rural to urban areas are consistently different from year to year are less well known. Our aim was to record atmospheric CO 2 concentrations, air temperature and other environmental variables in an urban area and compare it to suburban and rural sites to see if urban sites are experiencing climates expected globally in the future with climate change. A transect was established from Baltimore city center (Urban site), to the outer suburbs of Baltimore (suburban site) and out to an organic farm (rural site). At each site a weather station was set-up to monitor environmental variables for 5 years. Atmospheric CO 2 was consistently and significantly increased on average by 66 ppm from the rural to the urban site over the 5 years of the study. Air temperature was also consistently and significantly higher at the urban site (14.8 1C) compared to the suburban (13.6 1C) and rural (12.7 1C) sites. Relative humidity was not different between sites whereas the vapor pressure deficit (VPD) was significantly higher at the urban site compared to the suburban and rural sites. An increase in nitrogen deposition at the rural site of 0.6% and 1.0% compared to the suburban and urban sites was small enough not to affect soil nitrogen content. Dense urban areas with large populations and high vehicular traffic have significantly different microclimates compared to outlying suburban and rural areas. The increases in atmospheric CO 2 and air temperature are similar to changes predicted in the short term with global climate change, therefore providing an environment suitable for studying future effects of climate change on terrestrial ecosystems.
The effects of elevated CO2 concentrations on the antioxidant capacity and flavonoid content in strawberry fruit (Fragaria x ananassa Duch.) were studied under field conditions. Increased CO(2) (300 and 600 micromol mol(-1) above ambient) concentrations resulted in increases in ascorbic acid (AsA), glutathione (GSH), and ratios of AsA to dehydroascorbic acid (DHAsA) and GSH to oxidized glutathione (GSSG), and a decrease in DHAsA in strawberry fruit. High anthocyanin and phenolic content were also found in fruit of CO(2) treated plants. Growing strawberry plants under CO(2) enrichment conditions significantly enhanced fruit p-coumaroylglucose, dihydroflavonol, quercetin 3-glucoside, quercetin 3-glucuronide, and kaempferol 3-glucoside contents, as well as cyanidin 3-glucoside, pelargonidin 3-glucoside, and pelargonidin 3-glucoside-succinate content. Fruit of strawberry plants grown in the CO(2) enrichment conditions also had high oxygen radical absorbance activity against ROO(*), O(2)(*-), H(2)O(2), OH(*), and (1)O(2) radicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.