Ferulic acid is a potent ubiquitous plant antioxidant. Its incorporation into a topical solution of 15%l-ascorbic acid and 1%alpha-tocopherol improved chemical stability of the vitamins (C+E) and doubled photoprotection to solar-simulated irradiation of skin from 4-fold to approximately 8-fold as measured by both erythema and sunburn cell formation. Inhibition of apoptosis was associated with reduced induction of caspase-3 and caspase-7. This antioxidant formulation efficiently reduced thymine dimer formation. This combination of pure natural low molecular weight antioxidants provides meaningful synergistic protection against oxidative stress in skin and should be useful for protection against photoaging and skin cancer.
The SARS-CoV-2 (COVID-19) pandemic has placed a tremendous amount of strain on resources in the health care setting. One of the most pressing issues is the rapid depletion of personal protective equipment (PPE) used in the care of patients. This is a significant concern for health care workers' health and safety. Many entities have depleted or soon will exhaust their stockpile of PPE despite adopting PPE-sparing practices as the number of COVID-19 cases in the United States increases at an almost exponential rate and manufacturers struggle to keep up with the worldwide demand. This potential shortage is particularly concerning for commonly used N95 respirators and powered-air purifying respirators (PAPRs). Recently, the US Occupational Safety and Health Administration (OSHA) 1 even temporarily suspended the requirement to perform annual fit testing of respirators to allow entities to conserve respirators and preserve them for patient care. These measures are unprecedented and highlight the urgent need for entities to develop solutions to proactively address what could be potentially a grave occupational health issue.At Duke University and Health System, we have evaluated and will begin using hydrogen peroxide vapor to decontaminate and reuse N95 respirators. In this communication, we briefly discuss the decontamination validation process and post-decontamination performance validation conducted at Duke. This validation, which is supported by previous laboratory testing, funded by the US Food and Drug Administration (FDA), demonstrated that N95 respirators still met performance requirements even after decontamination with hydrogen peroxide vapor in the laboratory setting for over 50 times. 2 While previous studies have shown the applicability of the hydrogen peroxide vapor process, we have also confirmed that the respirator still functions as designed, using our standardized human N95 fit testing methodology. We will now use this internally validated and Duke Institutional Biosafety Review Committee (IBRC)-approved laboratory decontamination process in the clinical setting to dramatically extend the life of our N95 respirators. We hope that sharing our processes through this brief communication can help other entities with access to hydrogen peroxide vapor to evaluate the potential applicability of this technology at their facility or partner with those who may already have this capability, including other private-sector life science organizations. Process/MethodWe, like others, have implemented many Centers for Disease Control and Prevention (CDC)-approved N95 reuse practices, including employees reusing their own N95s for the duration of their shifts. However, this alone may not be adequate to meet our anticipated need with various centers reporting multiplefold higher use of PPE as their caseload increases. In the interest of our workforce safety, the goal was thus to extend the life of our existing supply.
Stem cells play a critical role in normal tissue maintenance, and mutations in these stem cells may give rise to cancer. We hypothesize that melanoma develops from a mutated stem cell and therefore residual stem cell characteristics should be able to be identified in melanoma cell lines. We studied three metastatic melanoma cell lines that exhibited multiple morphologic forms in culture and demonstrated the capacity to pigment. We used the ability to efflux Hoechst 33342 dye, a technique known to enrich for stem cells in many tissues, to segregate cell populations. The cells with the greatest ability to efflux the dye were (1) small in size, (2) had the capacity to give rise to larger cell forms, and (3) had the greatest ability to expand in culture. The small cells were found to have a decreased proliferative rate and were less melanized. Large dendritic cells that appeared to be nonproliferative were identified in cultures. Treatment with cytosine beta-D-arabinofuranoside hydrochloride (Ara-C) expanded the large cell population but the residual proliferative capacity, both in vitro and in vivo, remained concentrated in the smaller cell fraction. Antigenic staining patterns were variable and heterogeneous. Nestin (a neural stem cell marker) and gp100 (premelanosomal marker) favored the smaller cell population, while nerve growth factor receptor often labeled larger cells. Morphologic and antigenic heterogeneity remained intact after clonal purification. These findings are consistent with the behavior expected for a tumor based on stem cell biology; this finding has diagnostic and therapeutic implications for melanocytic neoplasias.
During development, the interaction of stem cell factor (SCF) with its receptor, KIT, is critical for the survival of melanocytes. Limited in vivo human studies have suggested a possible activating role of SCF on adult human melanocytes. In order to study the impact of this pathway on normal melanocyte homeostasis, human skin xenografts were treated with serial injections of recombinant human SCF or a KIT-inhibitory antibody (K44.2). On histologic evaluation, SCF injection increased, whereas KIT inhibition decreased the number, size, and dendricity of melanocytes. Immunohistochemical expression of melanocyte differentiation antigens, including tyrosinase-related-protein-1 and gp100/pmel17, was markedly increased by treatment with SCF, and decreased by K44.2 treatment. The number of Ki67-positive melanocytes was increased in the SCF-treated tissue, suggesting a direct proliferative effect of SCF; conversely, treatment with K44.2 resulted in melanocyte loss, which did not appear reversible with prolonged treatment. These findings demonstrate that the SCF/KIT pathway remains critical in adult human skin, and that pharmacologic modulation of this single pathway can control cutaneous melanocyte homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.