Intrinsically disordered proteins and regions (IDPs) represent a large class of proteins that are defined by conformational heterogeneity and lack of persistent tertiary/secondary structure. IDPs play important roles in a range of biological functions, and their dysregulation is central to numerous diseases, including neurodegeneration and cancer. The conformational ensembles of IDPs are encoded by their amino acid sequences. Here, we present two computational tools that are designed to enable rapid and high-throughput analyses of a wide range of physicochemical properties encoded by IDP sequences. The first, CIDER, is a user-friendly webserver that enables rapid analysis of IDP sequences. The second, localCIDER, is a high-performance software package that enables a wide range of analyses relevant to IDP sequences. In addition to introducing the two packages, we demonstrate the utility of these resources using examples where sequence analysis offers biophysical insights.
secondary structure were found at the MDM2 binding site that are very similar to estimates based directly on experimental observations. Structures were identified in these ensembles containing segments that are highly similar to short p53 peptides bound to MDM2, even though the ensembles were re-weighted using unbound experimental data. Ensembles were generated using chemical shift data (alpha carbon only, or in combination with other chemical shifts) and cross-validated by predicting residual dipolar couplings. Many intrinsically disordered proteins perform their functions within the cell by binding to a partner protein, often forming a defined structure (such as a helix or an extended strand) when they bind. To date most studies of coupled folding and binding have centred on the disordered protein or peptide, giving little consideration to the folded partner protein. Our recent work with 'model' IDP systems reveals that the folded partner protein can play an unexpectedly important role in the binding process.
Continuous infrared imaging revealed transient changes in forearm temperature during arterial occlusion, reperfusion, and recovery in a healthy subject group. Processing the imaging data with the k-means algorithm further revealed reactive vascular sites in the skin with rapid or delayed temperature amplification. The observed temporal and spatial diversity of blood-flow-derived forearm temperature allow consideration of thermal-imaging guided placement of skin sensors to achieve enhanced sensitivity in monitoring of skin hemodynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.