The 5.67-megabase genome of the plant pathogen Agrobacterium tumefaciens C58 consists of a circular chromosome, a linear chromosome, and two plasmids. Extensive orthology and nucleotide colinearity between the genomes of A. tumefaciens and the plant symbiont Sinorhizobium meliloti suggest a recent evolutionary divergence. Their similarities include metabolic, transport, and regulatory systems that promote survival in the highly competitive rhizosphere; differences are apparent in their genome structure and virulence gene complement. Availability of the A. tumefaciens sequence will facilitate investigations into the molecular basis of pathogenesis and the evolutionary divergence of pathogenic and symbiotic lifestyles.
Human HDL-associated paraoxonase (PON1) hydrolyzes a number of toxic organophosphorous compounds and reduces oxidation of LDLs and HDLs. These properties of PON1 account for its ability to protect against pesticide poisonings and atherosclerosis. PON1 also hydrolyzes a number of lactone and cyclic-carbonate drugs. Among individuals in a population, PON1 levels vary widely. We previously identified three polymorphisms in the PON1 regulatory region that affect expression levels in cultured human hepatocytes. In this study, we determined the genotypes of three regulatory-region polymorphisms for 376 white individuals and examined their effect on plasma-PON1 levels, determined by rates of phenylacetate hydrolysis. The -108 polymorphism had a significant effect on PON1-activity level, whereas the -162 polymorphism had a lesser effect. The -909 polymorphism, which is in linkage disequilibrium with the other sites, appears to have little or no independent effect on PON1-activity level in vivo. Other studies have found that the L55M polymorphism in the PON1-coding region is associated with differences in both PON1-mRNA and PON1-activity levels. The results presented here indicate that the L55M effect of lowered activity is not due to the amino acid change but is, rather, largely due to linkage disequilibrium with the -108 regulatory-region polymorphism. The codon 55 polymorphism marginally appeared to account for 15.3% of the variance in PON1 activity, but this dropped to 5% after adjustments for the effects of the -108 and Q192R polymorphisms were made. The -108C/T polymorphism accounted for 22.8% of the observed variability in PON1-expression levels, which was much greater than that attributable to the other PON1 polymorphisms. We also identified four sequence differences in the 3' UTR of the PON1 mRNA.
Human chromosome 7 has historically received prominent attention in the human genetics community, primarily related to the search for the cystic fibrosis gene and the frequent cytogenetic changes associated with various forms of cancer. Here we present more than 153 million base pairs representing 99.4% of the euchromatic sequence of chromosome 7, the first metacentric chromosome completed so far. The sequence has excellent concordance with previously established physical and genetic maps, and it exhibits an unusual amount of segmentally duplicated sequence (8.2%), with marked differences between the two arms. Our initial analyses have identified 1,150 protein-coding genes, 605 of which have been confirmed by complementary DNA sequences, and an additional 941 pseudogenes. Of genes confirmed by transcript sequences, some are polymorphic for mutations that disrupt the reading frame.
The outer carbohydrate layer, or O antigen, of Pseudomonas aeruginosa varies markedly in different isolates of these bacteria, and at least 20 distinct O-antigen serotypes have been described. Previous studies have indicated that the major enzymes responsible for O-antigen synthesis are encoded in a cluster of genes that occupy a common genetic locus. We used targeted yeast recombinational cloning to isolate this locus from the 20 internationally recognized serotype strains. DNA sequencing of these isolated segments revealed that at least 11 highly divergent gene clusters occupy this region. Homology searches of the encoded protein products indicated that these gene clusters are likely to direct O-antigen biosynthesis. The O15 serotype strains lack functional gene clusters in the region analyzed, suggesting that O-antigen biosynthesis genes for this serotype are harbored in a different portion of the genome. The overall pattern underscores the plasticity of the P. aeruginosa genome, in which a specific site in a well-conserved genomic region can be occupied by any of numerous islands of functionally related DNA with diverse sequences.Microbes occupy virtually every habitable niche in the biosphere, highlighting the underlying capacity for genetic adaptability in these organisms. Pseudomonas aeruginosa in particular is notable for its ability to thrive in diverse habitats (44). Consistent with a genetic basis for this environmental adaptability, characterization of intraspecies differences between strains of this organism has revealed extensive variation both in the gross overall structural organization of the genome (41) and in sequence variation of specific genes (20; M. V. Olson, A. Kas, and D. H. Spencer, unpublished data). Of particular interest is the observation that a rather large island (ϳ50 kbp) of genomic sequence, containing dozens of potential genes, is substituted in different P. aeruginosa isolates (25). This suggests that modular blocks of genes that are swapped between different strains is one mechanism that mediates diversity among these different bacterial lineages.The description of the full genomic sequence of P. aeruginosa strain PAO1 (46) provides a reference sequence map with which to initiate studies of genetic diversity at the whole-genome level. We employed whole-genome shotgun sequence analysis of three different P. aeruginosa strains as a means to detect both local and more global differences among strains isolated from different sources (Olson et al., unpublished). This study revealed a region with prominent differences between strains that proved to encode the O-antigen biosynthesis genes involved in the creation and assembly of the bacterial outer carbohydrate lipopolysaccharide coat (reviewed in reference 39). In various P. aeruginosa strains, the outer carbohydrate polymer, referred to as the B band, is composed of chemically diverse chains of repeating polysaccharides. The studies to date have indicated that a major set of enzymes responsible for O-antigen synthesis and assembly...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.