We derive analyticity constraints on a nonlinear ghost-free effective theory of a massive spin-2 particle known as pseudo-linear massive gravity, and on a generalized theory of a massive spin-1 particle, both of which provide simple IR completions of Galileon theories. For pseudo-linear massive gravity we find that, unlike dRGT massive gravity, there is no window of parameter space which satisfies the analyticity constraints. For massive vectors which reduce to Galileons in the decoupling limit, we find that no two-derivative actions are compatible with positivity, but that higher derivative actions can be made compatible.
We construct a class of extended shift symmetries for fields of all integer spins in de Sitter (dS) and anti-de Sitter (AdS) space. These generalize the shift symmetry, galileon symmetry, and special galileon symmetry of massless scalars in flat space to all symmetric tensor fields in (A)dS space. These symmetries are parametrized by generalized Killing tensors and exist for fields with particular discrete masses corresponding to the longitudinal modes of massive fields in partially massless limits. We construct interactions for scalars that preserve these shift symmetries, including an extension of the special galileon to (A)dS space, and discuss possible generalizations to interacting massive higher-spin particles.
We consider a procedure for directly constructing general tree-level four-particle scattering amplitudes of massive spinning particles that are consistent with the usual requirements of Lorentz invariance, unitarity, crossing symmetry, and locality. There are infinitely many such amplitudes, but we can isolate interesting theories by bounding the high-energy growth of the tree amplitudes within the effective field theory. This allows us to set model-independent lower bounds on the growth of tree-level amplitudes in any effective field theory with a given particle content and any interaction terms with an arbitrary but finite number of derivatives. In certain common cases this corresponds to finding the highest possible strong coupling scale. When applied to spin 2, we show that the only amplitudes that saturate this bound are generated by the known ghost-free theories of a massive spin-2 particle, namely dRGT massive gravity and the pseudolinear theory. We also make a conjecture for the allowed growth of tree amplitudes in a theory with a single massive particle of any integer spin.
We study the perturbative unitarity of scattering amplitudes in general dimensional reductions of Yang-Mills theories and general relativity on closed internal manifolds. For the tree amplitudes of the dimensionally reduced theory to have the expected high-energy behavior of the higherdimensional theory, the masses and cubic couplings of the Kaluza-Klein states must satisfy certain sum rules that ensure there are nontrivial cancellations between Feynman diagrams. These sum rules give constraints on the spectra and triple integrals of eigenfunctions of Laplacian operators on the internal manifold and can be proven directly using Hodge and eigenfunction decompositions. One consequence of these constraints is that there is an upper bound on the ratio of consecutive eigenvalues of the scalar Laplacian on closed Ricci-flat manifolds with special holonomy. This gives a sharp bound on the allowed gaps between Kaluza-Klein excitations of the graviton that also applies to Calabi-Yau compactifications of string theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.