<p><strong>Abstract.</strong> The vertical distribution in the physical and chemical properties of submicron aerosol has been characterised across northern India for the first time using airborne in situ measurements. This study focusses primarily on the Indo-Gangetic Plain, a low-lying area in the north of India which commonly experiences high aerosol mass concentrations prior to the monsoon season. Data presented are from the UK Facility for Airborne Atmospheric Measurements BAe-146 research aircraft that performed flights in the region during the 2016 pre-monsoon (11 and 12 June) and monsoon (30 June to 11 July) seasons.</p> <p>Inside the Indo-Gangetic Plain boundary layer, organic matter dominated the submicron aerosol mass (43&thinsp;%) followed by sulfate (29&thinsp;%), ammonium (14&thinsp;%), nitrate (7&thinsp;%) and black carbon (7&thinsp;%). However, outside the Indo-Gangetic Plain, sulfate was the dominant species, contributing 44&thinsp;% to the total submicron aerosol mass in the boundary layer, followed by organic matter (30&thinsp;%), ammonium (14&thinsp;%), nitrate (6&thinsp;%) and black carbon (6&thinsp;%). Chlorine mass concentrations were negligible throughout the campaign. Black carbon mass concentrations were higher inside the Indo-Gangetic Plain (2&thinsp;<span class="inline-formula">µ</span>g&thinsp;m<span class="inline-formula"><sup>−3</sup></span>) compared to outside (1&thinsp;<span class="inline-formula">µ</span>g&thinsp;m<span class="inline-formula"><sup>−3</sup></span>). Nitrate appeared to be controlled by thermodynamic processes, with increased mass concentration in conditions of lower temperature and higher relative humidity. Increased mass and number concentrations were observed inside the Indo-Gangetic Plain and the aerosol was more absorbing in this region, whereas outside the Indo-Gangetic Plain the aerosol was larger in size and more scattered in nature, suggesting greater dust presence, especially in north-western India. The aerosol composition remained largely similar as the monsoon season progressed, but the total aerosol mass concentrations decreased by <span class="inline-formula">∼50</span>&thinsp;% as the rainfall arrived; the pre-monsoon average total mass concentration was 30&thinsp;<span class="inline-formula">µ</span>g&thinsp;m<span class="inline-formula"><sup>−3</sup></span> compared to a monsoon average total mass concentration of 10–20&thinsp;<span class="inline-formula">µ</span>g&thinsp;m<span class="inline-formula"><sup>−3</sup></span>. However, this mass concentration decrease was less noteworthy (<span class="inline-formula">∼20</span>&thinsp;%–30&thinsp;%) over the Indo-Gangetic Plain, likely due to the strength of emission sources in this region. Decreases occurred in coarse mode aerosol, with the fine mode fraction increasing with monsoon arrival. In the aerosol vertical profile, inside the Indo-Gangetic Plain during the pre-monsoon, organic aerosol and absorbing aerosol species dominated in the lower atmosphere (<span class="inline-formula">&lt;1.5</span>&thinsp;km), with sulfate, dust and other scattering aerosol species enhanced in an elevated aerosol layer above 1.5&thinsp;km with maximum aerosol height <span class="inline-formula">∼6</span>&thinsp;km. The elevated concentration of dust at altitudes <span class="inline-formula">&gt;1.5</span>&thinsp;km is<span id="page5616"/> a clear indication of dust transport from the Great Indian Desert, also called the Thar Desert, in north-western India. As the monsoon progressed into this region, the elevated aerosol layer diminished, the aerosol maximum height reduced to <span class="inline-formula">∼2</span>&thinsp;km. The dust and sulfate-dominated aerosol layer aloft was removed upon monsoon arrival, highlighted by an increase in fine mode fraction throughout the profile.</p>
Abstract. Over the Indian region, aerosol absorption is considered to have a potential impact on the regional climate, monsoon and hydrological cycle. Black carbon (BC) is the dominant absorbing aerosol, whose absorption potential is determined mainly by its microphysical properties, including its concentration, size and mixing state with other aerosol components. The Indo-Gangetic Plain (IGP) is one of the regional aerosol hot spots with diverse sources, both natural and anthropogenic, but still the information on the mixing state of the IGP aerosols, especially BC, is limited and a significant source of uncertainty in understanding their climatic implications. In this context, we present the results from intensive measurements of refractory BC (rBC) carried out over Bhubaneswar, an urban site in the eastern coast of India, which experiences contrasting air masses (the IGP outflow or coastal/marine air masses) in different seasons. This study helps to elucidate the microphysical characteristics of BC over this region and delineates the IGP outflow from the other air masses. The observations were carried out as part of South West Asian Aerosol Monsoon Interactions (SWAAMI) collaborative field experiment during July 2016–May 2017, using a single-particle soot photometer (SP2) that uses a laser-induced incandescence technique to measure the mass and mixing state of individual BC particles and an aerosol chemical speciation monitor (ACSM) to infer the possible coating material. Results highlighted the distinctiveness in aerosol microphysical properties in the IGP air masses. BC mass concentration was highest during winter (December–February) (∼1.94±1.58 µg m−3), when the prevailing air masses were mostly of IGP origin, followed by post-monsoon (October–November) (mean ∼1.34±1.40 µg m−3). The mass median diameter (MMD) of the BC mass size distributions was in the range 0.190–0.195 µm, suggesting mixed sources of BC, and, further, higher values (∼ 1.3–1.8) of bulk relative coating thickness (RCT) (ratio of optical and core diameters) were seen, indicating a significant fraction of highly coated BC aerosols in the IGP outflow. During the pre-monsoon (March–May), when marine/coastal air masses prevailed, BC mass concentration was lowest (∼0.82±0.84 µg m−3), and larger BC cores (MMD > 0.210 µm) were seen, suggesting distinct source processes, while RCT was ∼ 1.2–1.3, which may translate into higher extent of absolute coating on BC cores, which may have crucial regional climate implications. During the summer monsoon (July–September), BC size distributions were dominated by smaller cores (MMD ≤ 0.185 µm), with the lowest coating indicating fresher BC, likely from fossil fuel sources. A clear diurnal variation pattern of BC and RCT was noticed in all the seasons, and daytime peak in RCT suggested enhanced coating on BC due to the condensable coating material originating from photochemistry. Examination of submicrometre aerosol chemical composition highlighted that the IGP outflow was dominated by organics (47 %–49 %), and marine/coastal air masses contained higher amounts of sulfate (41 %–47 %), while ammonium and nitrate were seen in minor amounts, with significant concentrations only during the IGP air mass periods. The diurnal pattern of sulfate resembled that of the RCT of rBC particles, whereas organic mass showed a pattern similar to that of the rBC mass concentration. Seasonally, the coating on BC showed a negative association with the mass concentration of sulfate during the pre-monsoon season and with organics during the post-monsoon season. These are the first experimental data on the mixing state of BC from a long time series over the Indian region and include new information on black carbon in the IGP outflow region. These data help in improving the understanding of regional BC microphysical characteristics and their climate implications.
Abstract. A total of 252 emission plumes of ships operating in the Mediterranean Sea and around the Arabian Peninsula were investigated using a comprehensive dataset of gas- and submicron-particle-phase properties measured during the 2-month shipborne AQABA (Air Quality and Climate Change in the Arabian Basin) field campaign in summer 2017. The post-measurement identification of the corresponding ship emission events in the measured data included the determination of the plume sources (up to 38 km away) as well as the plume ages (up to 115 min) and was based on commercially available historical records of the Automatic Identification System. The dispersion lifetime of chemically inert CO2 in the ship emission plumes was determined as 70±15 min, resulting in levels indistinguishable from the marine background after 260±60 min. Emission factors (EFs) as quantities that are independent of plume dilution were calculated and used for the investigation of influences on ship emission plumes caused by ship characteristics and the combustion process as well as by atmospheric processes during the early stage of exhaust release and during plume ageing. Combustion efficiency and therefore emission factors of black carbon and NOx were identified to depend mostly on the vessel speed and gross tonnage. Moreover, larger ships, associated with higher engine power, were found to use fuel with higher sulfur content and have higher gas-phase SO2, particulate sulfate, particulate organics, and particulate matter EFs. Despite the independence of EFs of dilution, a significant influence of the ambient wind speed on the particle number and mass EFs was observed that can be traced back to enhanced particle coagulation in the case of slower dilution and suppressed vapour condensation on particles in the case of faster dilution of the emission plume. Atmospheric reactions and processes in ship emission plumes were investigated that include NOx and O3 chemistry, gas-to-particle conversion of NOx and SO2, and the neutralisation of acids in the particle phase through the uptake of ambient gas-phase ammonia, the latter two of which cause the inorganic particulate content to increase and the organic fraction to decrease with increasing plume age. The results allow for us to describe the influences on (or processes in) ship emission plumes quantitatively by parameterisations, which could be used for further refinement of atmospheric models, and to identify which of these processes are the most important ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.