Epidemic respiratory infections are responsible for extensive morbidity and mortality within both military and civilian populations. We describe a high-throughput method to simultaneously identify and genotype species of bacteria from complex mixtures in respiratory samples. The process uses electrospray ionization mass spectrometry and base composition analysis of PCR amplification products from highly conserved genomic regions to identify and determine the relative quantity of pathogenic bacteria present in the sample. High-resolution genotyping of specific species is achieved by using additional primers targeted to highly variable regions of specific bacterial genomes. This method was used to examine samples taken from military recruits during respiratory disease outbreaks and for follow up surveillance at several military training facilities. Analysis of respiratory samples revealed high concentrations of pathogenic respiratory species, including Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pyogenes. When S. pyogenes was identified in samples from the epidemic site, the identical genotype was found in almost all recruits. This analysis method will provide information fundamental to understanding the polymicrobial nature of explosive epidemics of respiratory disease.genotyping ͉ group A streptococci ͉ infectious disease ͉ Streptococcus pyogenes ͉ pneumonia
A dual electrospray ionization (ESI) source employed with hexapole accumulation and gated trapping provides a novel method of using an internal standard to achieve high mass accuracies in Fourier transform ion cyclotron resonance mass spectrometry. Two ESI emitters are sequentially positioned in front of the heated metal capillary inlet by a solenoid fitted to an XYZ micromanipulator; one emitter contains the analyte(s) of interest and the other an internal standard. A 5 V transistor-transistor logic pulse from the data station controls the solenoid by means of a solid-state relay so that matching of spectral peak intensities (i.e., analyte and internal standard intensities) can be accomplished by adjusting the hexapole accumulation time for each species. Polythymidine, d(pT)18, was used as the internal standard for all studies reported here. The absolute average error for an internally calibrated 15-mer oligonucleotide (theoretical monoisotopic mass = 4548.769 Da) was -1.1 ppm (external calibration: 41 ppm) with a standard deviation of +/-3.0 ppm (external calibration: +/-24 ppm) for a total of 25 spectra obtained at various hexapole accumulation time ratios. Linear least squares regression analysis was carried out and revealed a linear dependence of the magnitudes of the peak height ratios (analyte/internal standard) vs. hexapole accumulation time ratios (analyte/internal standard) which is described by the following equation: y = 0.45 x - 0.02. The fitted line had a %RSD of the slope of 28% with an R2 of 0.93. The applicability of this methodology was extended to a polymerase chain reaction product with a theoretical average molecular mass of 50,849.20 Da. With the internal standard, d(pT)18, an absolute average error of -8.9 ppm (external calibration: 44 ppm) based on five measurements was achieved with a standard deviation of 11 ppm (external calibration: +/-36 ppm), thus illustrating this method's use for characterizing large biomolecules such as those encountered in genomics and proteomics related research.
High-mass accuracy is demonstrated using internal calibration for product ions produced by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) of a 15-mer oligonucleotide, 5'-(CTG)5-3'. Internal calibration for this tandem MS experiment was accomplished using a dual electrospray ionization (ESI) source coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) utilizing hexapole accumulation and gated trapping. The pulse sequence entails injection, trapping, and gas-phase isolation of the precursor ion of interest followed by the SORI-CID of this ion and, subsequently, injection and trapping of the internal mass calibrant (i.e., poly(ethylene glycol) with a 1000 Da average mass). The product ions and the poly(ethylene glycol) ions are then simultaneously excited by a broadband frequency chirp excitation waveform and detected. This technique corrects for space-charge effects on the measurement of an ion's cyclotron frequency experienced when externally calibrated data are used. While external calibration for FTICR-MS can result in mass errors of greater than 100 ppm, this internal standardization method demonstrated significantly more consistent accurate mass measurements with average mass errors ranging from -1.2 to -3.2 ppm for the 15-mer oligonucleotide used in this study. This method requires limited modifications to ESI-FTICR mass spectrometers and is applicable for both positive and negative modes of ionization as well as other sample types (e.g., pharmaceuticals, proteins, etc.).
Fourier transform ion cyclotron resonance (FTICR) mass spectrometry represents a unique platform with which to study nucleic acids and non-covalent complexes containing nucleic acids moieties. In particular, systems in which very high mass measurement accuracy is required, very complex mixtures are to be analyzed, or very limited amounts of sample are available may be uniquely suited to interrogation by FTICR mass spectrometry. Although the FTICR platform is now broadly deployed as an integral component of many high-end proteomics-based research efforts, momentum is still building for the application of the platform towards nucleic acid-based analyses. In this work, we review fundamental aspects of nucleic acid analysis by FTICR, focusing primarily on the analysis of DNA oligonucleotides but also describing applications related to the characterization of RNA constructs. The goal of this review article is to give the reader a sense of the breadth and scope of the status quo of FTICR analysis of nucleic acids and to summarize a few recently published reports in which researchers have exploited the performance attributes of FTICR to characterize nucleic acids in support of basic and applied research disciplines including genotyping, drug discovery, and forensic analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.