We describe a new technology, the Ibis T5000, for the identification of pathogens in clinical and environmental samples. The Ibis T5000 couples nucleic acid amplification to high-performance electrospray ionization mass spectrometry and base-composition analysis. The system enables the identification and quantification of a broad set of pathogens, including all known bacteria, all major groups of pathogenic fungi and the major families of viruses that cause disease in humans and animals, along with the detection of virulence factors and antibiotic resistance markers.
In a previous bioinformatics-based search for novel small-RNA genes encoded by the Escherichia coli genome, we identified a region, IS063, located between the ompN and ydbK genes, that encodes an ϳ100-nucleotide small-RNA transcript. Here we show that the expression of this small RNA is increased at a low temperature and in minimal medium. Twenty-two nucleotides at the 5 end of this transcript have the potential to form base pairs with the leader sequence of the mRNA encoding the outer membrane protein OmpC. The deletion of IS063 increased the expression of an ompC-luc translational fusion 1.5-to 2-fold, and a 10-fold overexpression of the small RNA led to a 2-to 3-fold repression of the fusion. Deletion and overexpression of the IS063 RNA also resulted in increases and decreases, respectively, in OmpC protein levels. Taken together, these results suggest that IS063 is a regulator of OmpC expression; thus, the small RNA has been renamed MicC. The antisense regulation was further demonstrated by the finding that micC mutations were suppressed by compensatory mutations in the ompC mRNA. MicC was also shown to inhibit ribosome binding to the ompC mRNA leader in vitro and to require the Hfq RNA chaperone for its function. We suggest that the MicF and MicC RNAs act in conjunction with the EnvZ-OmpR two-component system to control the OmpF/OmpC protein ratio in response to a variety of environmental stimuli.
Transcription of the pap pilin (papA) gene in Escherichia coli is subject to control by a heritable phase variation mechanism in which alternation between transcriptionally active (phase on) and inactive (phase off) states occurs. Our results suggest that phase switching occurs without DNA rearrangement of pap DNA sequences, distinguishing this system from those described for E. coli type 1 pili and Salmonella flagellar phase variation. Analysis of the regulatory region upstream of papA in DNAs isolated from phase off and phase on cell populations showed that two deoxyadenosine methylase (Dam) sites, GATC1028 and GATC1130, were present. Southern blot analysis of MboI and DpnI restriction digests of DNAs showed that the GATC1028 site was unmethylated only in DNA isolated from phase on populations. Conversely, GATC1130 sites were unmethylated in DNA isolated from phase off populations. The presence of unmethylated GATC sites in E. coli is unusual and to our knowledge has not been previously reported. These results suggest that the methylation states of GATC1028 and GATC1130 may regulate pap transcription. Consistent with this hypothesis, Dam methylase levels affected the regulation of pap transcription; papA transcription was absent in dam‐ E. coli. Moreover, transition from the phase off to phase on state was not observed in E. coli expressing aberrantly high levels of Dam. A basic model is presented which outlines a possible mechanism by which alternation between phase off and phase on methylation states could occur.
The 5' noncoding region of poliovirus RNA contains an internal ribosome entry site (IRES) for capindependent initiation of translation. Utilization of the IRES requires the participation of one or more cellular proteins that mediate events in the translation initiation reaction, but whose biochemical roles have not been defined. In this report, we identify a cellular RNA binding protein isolated from the ribosomal salt wash of uninfected HeLa cells that specifically binds to stem-loop IV, a domain located in the central part of the poliovirus IRES. The protein was isolated by specific RNA affinity chromatography, and 55% of its sequence was determined by automated liquid chromatography-tandem mass spectrometry. The sequence obtained matched that of poly(rC) binding protein 2 (PCBP2), previously identified as an RNA binding protein from human cells. PCBP2, as well as a related protein, PCBP1, was over-expressed in Escherichia coli after cloning the cDNAs into an expression plasmid to produce a histidine-tagged fusion protein. Specific interaction between recombinant PCBP2 and poliovirus stem-loop IV was demonstrated by RNA mobility shift analysis. The closely related PCBP1 showed no stable interaction with the RNA. Stem-loop IV RNA containing a three nucleotide insertion that abrogates translation activity and virus viability was unable to bind PCBP2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.