Field-derived values for aerodynamic drag area can be equivalent to values derived from wind tunnel testing, and these values can be used to accurately predict speed even during maximal-power acceleration by world-class sprint cyclists. This model could be useful for assessing aerodynamic issues and for predicting how subtle changes in riding position, mass, or power output will influence cycling speed.
Performance models provide an opportunity to examine cycling in a broad parameter space. Variables used to drive such models have traditionally been measured in the laboratory. The assumption, however, that maximal laboratory power is similar to field power has received limited attention. The purpose of the study was to compare the maximal torque- and power-pedaling rate relationships during "all-out" sprints performed on laboratory ergometers and on moving bicycles with elite cyclists. Over a 3-day period, seven male (mean +/- SD; 180.0 +/- 3.0 cm; 86.2 +/- 6.1 kg) elite track cyclists completed two maximal 6 s cycle ergometer trials and two 65 m sprints on a moving bicycle; calibrated SRM powermeters were used and data were analyzed per revolution to establish torque- and power-pedaling rate relationships, maximum power, maximum torque and maximum pedaling rate. The inertial load of our laboratory test was (37.16 +/- 0.37 kg m(2)), approximately half as large as the field trials (69.7 +/- 3.8 kg m(2)). There were no statistically significant differences between laboratory and field maximum power (1791 +/- 169; 1792 +/- 156 W; P = 0.863), optimal pedaling rate (128 +/- 7; 129 +/- 9 rpm; P = 0.863), torque-pedaling rate linear regression slope (-1.040 +/- 0.09; -1.035 +/- 0.10; P = 0.891) and maximum torque (266 +/- 20; 266 +/- 13 Nm; P = 0.840), respectively. Similar torque- and power-pedaling rate relationships were demonstrated in laboratory and field settings. The findings suggest that maximal laboratory data may provide an accurate means of modeling cycling performance.
Single-leg cycling may enhance the peripheral adaptations of skeletal muscle to a greater extent than double-leg cycling. The purpose of the current study was to determine the influence of 3 wk of high-intensity single- and double-leg cycle training on markers of oxidative potential and muscle metabolism and exercise performance. In a crossover design, nine trained cyclists (78 ± 7 kg body wt, 59 ± 5 ml·kg(-1)·min(-1) maximal O(2) consumption) performed an incremental cycling test and a 16-km cycling time trial before and after 3 wk of double-leg and counterweighted single-leg cycle training (2 training sessions per week). Training involved three (double) or six (single) maximal 4-min intervals with 6 min of recovery. Mean power output during the single-leg intervals was more than half that during the double-leg intervals (198 ± 29 vs. 344 ± 38 W, P < 0.05). Skeletal muscle biopsy samples from the vastus lateralis revealed a training-induced increase in Thr(172)-phosphorylated 5'-AMP-activated protein kinase α-subunit for both groups (P < 0.05). However, the increase in cytochrome c oxidase subunits II and IV and GLUT-4 protein concentration was greater following single- than double-leg cycling (P < 0.05). Training-induced improvements in maximal O(2) consumption (3.9 ± 6.2% vs. 0.6 ± 3.6%) and time-trial performance (1.3 ± 0.5% vs. 2.3 ± 4.2%) were similar following both interventions. We conclude that short-term high-intensity single-leg cycle training can elicit greater enhancement in the metabolic and oxidative potential of skeletal muscle than traditional double-leg cycling. Single-leg cycling may therefore provide a valuable training stimulus for trained and clinical populations.
The literature concerning the psychological consequences following spinal cord injury (SCI) indicates a discordance between clinical impressions and empirical research. Although many studies report that psychological morbidity is not an inevitable consequence of SCI, much of this research is characterised by methodological inadequacies and the conclusions are therefore tenuous. The present study assessed 41 persons with SCI for depression and anxiety using objective psychological measures on three occasions over the first year of SCI and compared them with 41 able bodied controls matched for age, sex, education and, as far as possible, occupation. Results demonstrated significant differences between the two groups, with the SCI group being more anxious and depressed. However, psychological morbidity was not an inevitable consequence of SCI, with group means reflecting mild levels of depression and anxiety. No significant differences were found across time and no interactions between groups and time were detected. Implications for the treatment of SCI are discussed.
Background. Previous investigators have reported that maximal power increases during growth and decreases with aging. These age-related differences have been reported to persist even when power is scaled to body mass or muscle size. We hypothesized that age-related differences in maximal power were primarily related to differences in muscle size and fiber-type distribution rather than to age per se.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.