Allozymes were used to study the spatial attributes of clones (genets) comprising a population of Pteridium aquilinum (L.) Kuhn var. latiusculum (Desv.) Underw. ex Heller (bracken fern) in the Appalachian Mountains of Virginia. Ramets (individual leaves) were sampled at intervals of 165 m (or less in some cases) and genotyped for six polymorphic isozyme loci to produce a map depicting the spatial patterning of genets. Forty-five distinct genotypes were detected, 14 of which were sampled more than once, five of these more than four times. Genotype proportions at all loci except Pgm-1 conformed to Hardy-Weinberg expectations. Estimation of allele frequencies in the population used a "round-robin" approach that removed any upward bias for rare alleles that distinguish genets. Based on these allele frequencies, the probability that each genotype could arise independently and be sampled was calculated. Some genotypes represented by widely separated ramets had very low probabilities of re-encounter, documenting fragmentation of widespread genets. Coarse-scale mapping indicated a population consisting of many small genets and a few very large ones (up to 1,015 m across). The larger genets tended to be irregular in shape, fragmented, and overlapping. Fine scale mapping of individual fronds in spatially discrete patches of ramets revealed extensive intergrowth of genets, indicating that P. aquilinum exhibits a "guerrilla-type" clonal morphology.
Cystopteris dickieana R. Sim is a fern species that currently receives legal protection in Britain on the basis that it is endemic to Scotland and extremely rare. However, ever since it was first discovered in the 1830s, there has been considerable debate about its taxonomic status within the Cystopteris fragilis complex. This debate centres on the relative importance of two characters, the architecture of the fronds and the surface sculpturing of the spores, in delimiting C. dickieana from other taxa in the C. fragilis complex and is complicated by the fact that most comparative studies reputed to have included ‘C. dickieana’ have failed to include either the type material of C. dickieana or material from the ’type population‘ (i.e. the population of plants, of uniform and distinctive morphology, that still grows at the type locality for C. dickieana). The principal aim of this investigation was to generate some of the critical data and information currently missing from the debate concerning the taxonomic status of C. dickieana by including material from the ’type population‘ in an allozyme study of several Scottish Cystopteris populations. The frond architecture, spore sculpturing, and allozyme banding patterns were investigated in five natural and two cultivated populations of the C. fragilis complex. All plants from the ‘type population’ of C. dickieana had the distinctive frond architecture and rugose spores of the type material. Two populations comprised plants that had the frond architecture and echinate spores typical of C. fragilis. Also examined were two populations containing plants that had frond architecture typical of C. fragilis but rugose spores similar to those of the type material of C. dickieana. These plants occurred with typical C. fragilis in one of the populations and with typical C. dickieana in the other. In the latter population, situated close to the ‘type population’ for C. dickieana, a third, ‘smooth’ spore type occurred in nine out of 55 fertile plants. Consistent and analysable allozyme results were obtained for seven enzymes at ten loci: eight loci were polymorphic and all but the smallest population showed variation at one or more loci. In total, 22 allozyme phenotypes were recorded in 226 individuals. No consistent correlation was found between frond architecture, spore sculpturing and allozyme banding pattern. Our results provide no support for the recognition of C. dickieana as a distinct species related to C. fragilis.
Cystopteris dickieana R.Sim is a rare fern protected in Britain under the 1981 Wildlife and Countryside Act. Most current floras treat it as a distinct species but ever since it was first discovered in Scotland in the 1830s, there has been considerable debate about its taxonomic status within the C. fragilis complex. This debate centres on the relative importance of two characters, the architecture of the fronds and the surface sculpturing of the spores, in delimiting C. dickieana from other taxa in the C. fragilis complex. The type specimens of C. dickieana have distinctive fronds. Plants with similar frond architecture have, to date, been recorded growing naturally only at the site in Scotland from which the type specimens were collected and at one other site nearby. The type specimens of C. dickieana also have mature spores with surface sculpturing often described as ‘rugose’. These are distinctive and unusual in the genus Cystopteris, in which most taxa have ‘echinate’ spores. However, rugose-spored plants have been recorded not only at, and near, the type locality in Scotland but also at many other sites in the northern hemisphere in populations of plants defined largely on the basis of frond architecture as C. fragilis or C. baenitzii. This indicates that spore sculpturing should not be used alone to delimit C. dickieana from other taxa within the C. fragilis complex but, despite this, the literature on ‘C. dickieana’ contains many reports of studies on material identified as C. dickieana solely on the basis of spore sculpturing. This, combined with the fact that most comparative studies have also failed to include material known to have come from the type locality, has resulted in considerable and continuing uncertainty over the taxonomic status and distribution of C. dickieana.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.