A highly efficient method has been developed for the solid-phase synthesis of an "unnatural biopolymer" consisting of chiral aminocarbonate monomers linked via a carbamate backbone. Oligocarbamates were synthesized from N-protected p-nitrophenyl carbonate monomers, substituted with a variety of side chains, with greater than 99 percent overall coupling efficiencies per step. A spatially defined library of oligocarbamates was generated by using photochemical methods and screened for binding affinity to a monoclonal antibody. A number of high-affinity ligands were then synthesized and analyzed in solution with respect to their inhibition concentration values, water/octanol partitioning coefficients, and proteolytic stability. These and other unnatural polymers may provide new frameworks for drug development and for testing theories of protein and peptide folding and structure.
Throughout the last decade many laboratories have shown that mRNA levels in formalin-fixed and paraffin-embedded (FPE) tissue specimens can be quantified by reverse transcriptase-polymerase chain reaction (RT-PCR) techniques despite the extensive RNA fragmentation that occurs in tissues so preserved. We have developed RT-PCR methods that are sensitive, precise, and that have multianalyte capability for potential wide use in clinical research and diagnostic assays. Here it is shown that the extent of fragmentation of extracted FPE tissue RNA significantly increases with archive storage time. Probe and primer sets for RT-PCR assays based on amplicons that are both short and homogeneous in length enable effective reference gene-based data normalization for cross comparison of specimens that differ substantially in age. A 48-gene assay used to compare gene expression profiles from the same breast cancer tissue that had been either frozen or FPE showed very similar profiles after reference gene-based normalization. A 92-gene assay, using RNA extracted from three 10- micro m FPE sections of archival breast cancer specimens (dating from 1985 to 2001) yielded analyzable data for these genes in all 62 tested specimens. The results were substantially concordant when estrogen receptor, progesterone receptor, and HER2 receptor status determined by RT-PCR was compared with immunohistochemistry assays for these receptors. Furthermore, the results highlight the advantages of RT-PCR over immunohistochemistry with respect to quantitation and dynamic range. These findings support the development of RT-PCR analysis of FPE tissue RNA as a platform for multianalyte clinical diagnostic tests.
Expression cloning of cDNAs encoding a basic fibroblast growth factor (FGF) binding protein confirms previous hypotheses that this molecule is a cell-surface heparan sulfate proteoglycan. A cDNA library constructed from a hamster kidney cell line rich in FGF receptor activity was transfected into a human lymphoblastoid cell line. Clones expressing functional basic FGF binding proteins at their surfaces were enriched by panning on plastic dishes coated with human basic FGF. The amino acid sequence deduced from the isolated cDNAs revealed several interesting features, including hydrophobic signal and transmembrane domains that flank an extracellular region containing six potential attachment sites for glycosaminoglycan side chains. The structure also contains a short hydrophilic cytoplasmic tail sequence homologous to previously reported actin binding domains. Binding of basic FGF to cells expressing the binding protein could be inhibited by heparin and heparan sulfate but not by chondroitin sulfate, dermatan sulfate, or keratan sulfate. In addition to binding basic FGF, this protein or related surface proteins may function as an initial cellular attachment site for other growth factors and for viruses, such as herpes simplex virus.
RNA biomarkers discovered by RT-PCR-based gene expression profiling of archival formalin-fixed paraffin-embedded (FFPE) tissue form the basis for widely used clinical diagnostic tests; however, RT-PCR is practically constrained in the number of transcripts that can be interrogated. We have developed and optimized RNA-Seq library chemistry as well as bioinformatics and biostatistical methods for whole transcriptome profiling from FFPE tissue. The chemistry accommodates low RNA inputs and sample multiplexing. These methods both enable rediscovery of RNA biomarkers for disease recurrence risk that were previously identified by RT-PCR analysis of a cohort of 136 patients, and also identify a high percentage of recurrence risk markers that were previously discovered using DNA microarrays in a separate cohort of patients, evidence that this RNA-Seq technology has sufficient precision and sensitivity for biomarker discovery. More than two thousand RNAs are strongly associated with breast cancer recurrence risk in the 136 patient cohort (FDR <10%). Many of these are intronic RNAs for which corresponding exons are not also associated with disease recurrence. A number of the RNAs associated with recurrence risk belong to novel RNA networks. It will be important to test the validity of these novel associations in whole transcriptome RNA-Seq screens of other breast cancer cohorts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.