SUMMARYBurrowing marine infauna are morphologically diverse and range in size over several orders of magnitude. Whilst effects of ontogenetic and morphological differences on running, flying and swimming are relatively well understood, similar analyses of burrowing mechanics and kinematics are lacking. The polychaete Nereis virens Sars extends its burrow by fracture, using an eversible pharynx to exert force on the walls of the burrow. The resulting stress is amplified at the anterior tip of the burrow, which extends when the stress exceeds the fracture toughness of the material. Here we show that the polychaete Cirriformia moorei extends its burrow by a similar mechanism, but by using its hydrostatic skeleton rather than an eversible pharynx. Based on the dimensionless wedge number, which relates work of fracture to work to maintain body shape against the elasticity of sediment, we predicted that smaller worms would exhibit behaviors characteristic of tougher sediments and that scaling of kinematics would reflect decreasing difficulty in fracturing sediment with increasing body size. We found that smaller worms were relatively blunter and thicker, and had a greater variation of thickness than larger worms as they burrowed. Although these kinematic differences increase the stress amplification at the crack tip, smaller worms still generate lower stress intensity factors. The greater relative body thickness and shape changes of smaller worms are consistent with ontogenetic changes in forces exerted by earthworms, and are likely driven by the challenge of exerting enough stress to extend a crack with a small body size. Supplementary material available online at
SUMMARYThe polychaete Cirriformia moorei burrows in muddy sediments by fracture, using its hydrostatic skeleton to expand its anterior region and exert force against its burrow wall to extend a crack. Burrowing occurs in four phases: stretching forward into the burrow, extending the crack anteriorly, thickening the burrowing end to amplify stress at the tip of the crack, and bringing the rest of the body forward as a peristaltic wave travels posteriorly. Here, we show that C. moorei is also able to burrow with its posterior end using a similar mechanism of crack propagation and exhibiting the same four phases of burrowing. Worms burrowed backwards with similar speeds and stress intensity factors as forward burrowing, but were thinner and less blunt and did not slip as far away from the crack tip between cycles of burrowing. The anterior end is more muscular and rigid, and differences in body shapes are consistent with having reduced musculature to dilate the posterior segments while burrowing. Backward burrowing provides a unique opportunity to study the effects of morphology on burrowing mechanics within the same species under identical conditions. Supplementary material available online at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.