Bile acid diarrhoea (BAD) is a common disease that requires expensive imaging to diagnose. We have tested the efficacy of a new method to identify BAD, based on the detection of differences in volatile organic compounds (VOC) in urine headspace of BAD vs. ulcerative colitis and healthy controls. A total of 110 patients were recruited; 23 with BAD, 42 with ulcerative colitis (UC) and 45 controls. Patients with BAD also received standard imaging (Se75HCAT) for confirmation. Urine samples were collected and the headspace analysed using an AlphaMOS Fox 4000 electronic nose in combination with an Owlstone Lonestar Field Asymmetric Ion Mobility Spectrometer (FAIMS). A subset was also tested by gas chromatography, mass spectrometry (GCMS). Linear Discriminant Analysis (LDA) was used to explore both the electronic nose and FAIMS data. LDA showed statistical differences between the groups, with reclassification success rates (using an n-1 approach) at typically 83%. GCMS experiments confirmed these results and showed that patients with BAD had two chemical compounds, 2-propanol and acetamide, that were either not present or were in much reduced quantities in the ulcerative colitis and control samples. We believe that this work may lead to a new tool to diagnose BAD, which is cheaper, quicker and easier that current methods.
A UK-wide audit showed that thyroid uptake imaging is still a common test in the UK. It was found that most centres do not adhere to all aspects of the BNMS practice guidelines but that quantitative results are reasonably consistent for Tc-based scans.
The visibility of the colon in positron emission tomography (PET) scans of patients without gastrointestinal disease indicating the presence of 18F Fluorodeoxyglucose (18FDG) is well recognised, but unquantified and unexplained. In this paper a qualitative scoring system was applied to PET scans from 30 randomly selected patients without gastrointestinal disease to detect the presence of 18FDG in 4 different sections of the colon and then both the total pixel value and the pixel value per unit length of each section of the colon were determined to quantify the amount of 18FDG from a randomly selected subset of 10 of these patients. Analysis of the qualitative scores using a non-parametric ANOVA showed that all sections of the colon contained 18FDG but there were differences in the amount of 18FDG present between sections (p<0.05). Wilcoxon matched-pair signed-rank tests between pairs of segments showed statistically significant differences between all pairs (p<0.05) with the exception of the caecum and ascending colon and the descending colon. The same non-parametric statistical analysis of the quantitative measures showed no difference in the total amount of 18FDG between sections (p>0.05), but a difference in the amount/unit length between sections (p<0.01) with only the caecum and ascending colon and the descending colon having a statistically significant difference (p<0.05). These results are consistent since the eye is drawn to focal localisation of the 18FDG when qualitatively scoring the scans. The presence of 18FDG in the colon is counterintuitive since it must be passing from the blood to the lumen through the colonic wall. There is no active mechanism to achieve this and therefore we hypothesise that the transport is a passive process driven by the concentration gradient of 18FDG across the colonic wall. This hypothesis is consistent with the results obtained from the qualitative and quantitative measures analysed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.