Brain ischemia results from cardiac arrest, stroke or head trauma. These conditions can cause severe brain damage and are a leading cause of death and long-term disability. Neurons are far more susceptible to ischemic damage than neighboring astrocytes, but astrocytes have diverse and important functions in many aspects of ischemic brain damage. Here we review three main roles of astrocytes in ischemic brain damage. First, we consider astrocyte glycogen stores, which can defend the brain against hypoglycemic brain damage but may aggravate brain damage during ischemia due to enhanced lactic acidosis. Second, we review recent breakthroughs in understanding astrocytic mechanisms of transmitter release, particularly for those transmitters with known roles in ischemic brain damage: glutamate, D-serine, ATP and adenosine. Third, we discuss the role of gap-junctionally connected networks of astrocytes in mediating the spread of damaging molecules to healthy 'bystanders' during infarct expansion in stroke.
It is well established that long-term potentiation (LTP),
The lateral magnocellular nucleus of the anterior neostriatum (lMAN) is necessary for both initial learning of vocal patterns in developing zebra finches, as well as for modification of adult song under some circumstances. Lateral MAN is composed of two subregions: a core of magnocellular neurons and a surrounding shell composed primarily of parvocellular neurons. Neurons in lMAN(core) project to a region of motor cortex known as robust nucleus of the archistriatum (RA), whereas neurons in lMAN(shell) project to a region adjacent to RA known as dorsal archistriatum (Ad). We studied the axonal connections of Ad in adult male zebra finches. In contrast to RA, Ad neurons make a large number of efferent projections, which do not include direct inputs to vocal or respiratory motor neurons. The major efferent projections of Ad are to: (1) the striatum of avian basal ganglia; (2) a dorsal thalamic zone (including the song-control nuclei dorsomedial nucleus of the posterior thalamus [DMP] and dorsolateral nucleus of the medial thalamus [DLM]); (3) restricted regions within the lateral hypothalamus (stratum cellulare externum [SCE]), which may also relay information to the same dorsal thalamic zone; (4) a nucleus in the caudal thalamus (medial spiriform nucleus [SpM]); (5) deep layers of the tectum, which project to the thalamic song-control nucleus Uva; (6) broad regions of pontine and midbrain reticular formation; and (7) areas within the ventral tegmental area and substantia nigra (ventral tegmental area [AVT], substantia nigra [SN]), which overlap with regions that project to Area X, a song-control nucleus of avian striatum. Inputs to Ad derive not only from lMAN(shell), but also from a large area of dorsolateral caudal neostriatum (dNCL), which also receives input from lMAN(shell). That is, lMAN(shell) neurons project directly to Ad, and also multisynaptically to Ad via dNCL. Double-labeling studies show that lMAN(shell) contains two different populations of projection neurons: one that projects to Ad and another to dNCL. These results are exciting for two main reasons. The first is that some of these projections represent potential closed-loop circuits that could relay information back to song-control nuclei of the telencephalon, possibly allowing diverse types of song-related information to be both integrated between loops and compared during the period of auditory-motor integration. Because both auditory experience with an adult (tutor) song pattern and auditory feedback are essential to vocal learning, closed-loop pathways could serve as comparator circuits in which efferent commands, auditory feedback, and the memory of the tutor song are compared in an iterative fashion to achieve a gradual refinement of vocal production until it matches the tutor song. In addition, these circuits seem to have a strong integrative and limbic flavor. That is, the axonal connections of Ad neurons clearly include regions that receive inputs not only from somatosensory, visual, and auditory areas of cortex, but also from limbic reg...
Phosphatidylinositol-3,4,5-trisphosphate (PIP3) has been proposed to modulate the odorant sensitivity of olfactory sensory neurons by inhibiting activation of cyclic nucleotide-gated (CNG) channels in the cilia. When applied to the intracellular face of excised patches, PIP3 has been shown to inhibit activation of heteromeric olfactory CNG channels, composed of CNGA2, CNGA4, and CNGB1b subunits, and homomeric CNGA2 channels. In contrast, we discovered that channels formed by CNGA3 subunits from cone photoreceptors were unaffected by PIP3. Using chimeric channels and a deletion mutant, we determined that residues 61-90 within the N terminus of CNGA2 are necessary for PIP3 regulation, and a biochemical ''pulldown'' assay suggests that PIP3 directly binds this region. The N terminus of CNGA2 contains a previously identified calcium-calmodulin (Ca 2؉ ͞CaM)-binding domain (residues 68 -81) that mediates Ca 2؉ ͞CaM inhibition of homomeric CNGA2 channels but is functionally silent in heteromeric channels. We discovered, however, that this region is required for PIP3 regulation of both homomeric and heteromeric channels. Furthermore, PIP3 occluded the action of Ca 2؉ ͞CaM on both homomeric and heteromeric channels, in part by blocking Ca 2؉ ͞CaM binding. Our results establish the importance of the CNGA2 N terminus for PIP3 inhibition of olfactory CNG channels and suggest that PIP3 inhibits channel activation by disrupting an autoexcitatory interaction between the N and C termini of adjacent subunits. By dramatically suppressing channel currents, PIP3 may generate a shift in odorant sensitivity that does not require prior channel activity.lipid signaling ͉ olfaction ͉ phosphatidylinositide ͉ sensory adaptation O dorant binding to specialized receptors in the cilia of olfactory sensory neurons triggers an increase in intracellular cAMP (1-4), which directly opens cyclic nucleotide-gated (CNG) channels (5). Calcium influx through CNG channels activates an atypical chloride current (6-8), leading to depolarization of the cell membrane. The elevated calcium also causes rapid adaptation to odorants by triggering a calcium-calmodulin (Ca 2ϩ ͞CaM)-dependent decrease in the sensitivity of CNG channels to cAMP (9). Recent evidence suggests that phosphatidylinositol-3,4,5-trisphosphate (PIP 3 ) also decreases the sensitivity of olfactory CNG channels and reduces the response of olfactory sensory neurons to complex odors, but the mechanism has yet to be elucidated (10, 11).Ca 2ϩ ͞CaM inhibits homomeric CNGA2 channel activation by binding to a Baa-like motif in the N terminus (12-14), thereby disrupting an autostimulatory interaction with the C terminus of an adjacent subunit (15-17). Deletion of the Ca 2ϩ ͞CaM-binding domain (amino acids 68-81) in CNGA2 produces channels that are resistant to inhibition by Ca 2ϩ ͞CaM and exhibit dramatically reduced sensitivity to cyclic nucleotides due to the loss of the autostimulatory interaction. Native olfactory CNG channels are tetrameric assemblies of three different pore-forming subunits, C...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.