A model of a photovoltaic (PV) powered residence in stand-alone configuration was developed and evaluated. The model assesses the sizing, capital costs, control strategies, and efficiencies of reversible fuel cells (RFC), batteries, and ultra-capacitors (UC) both individually, and in combination, as hybrid energy storage devices. The choice of control strategy for a hybrid energy storage system is found to have a significant impact on system efficiency, hydrogen production and component utilization. A hybrid energy storage system comprised of batteries and RFC has the advantage of reduced cost (compared to using a RFC as the sole energy storage device), high system efficiency and hydrogen energy production capacity. A control strategy that preferentially used the RFC before the battery in meeting load demand allows both grid independent operation and better RFC utilization compared to a system that preferentially used the battery before the RFC. Ultra-capacitors coupled with a RFC in a hybrid energy storage system contain insufficient energy density to meet dynamic power demands typical of residential applications.
A 100 MW-class planar solid oxide fuel cell, synchronous gas turbine hybrid system has been designed, modeled and controlled. The system is built of 70 functional fuel cell modules each containing 10 fuel cell stacks, a blower to recirculate depleted cathode air, a depleted fuel oxidizer and a cathode inlet air recuperator with bypass. The recuperator bypass serves to control the cathode inlet air temperature while the variable speed cathode blower recirculates air to control the cathode air inlet temperature. This allows for excellent fuel cell thermal management without independent control of the gas turbine, which at this scale will most likely be a synchronous generator. In concept the demonstrated modular design makes it possible to vary the number of cells controlled by each fuel valve, power electronics module, and recirculation blower, so that actuators can adjust to variations in the hundreds of thousands of fuel cells contained within the 100 megawatt hybrid system for improved control and reliability. In addition, the modular design makes it possible to take individual fuel cell modules offline for maintenance while the overall system continues to operate. Parametric steady state design analyses conducted on the system reveal that the overall fuel-to-electricity conversion efficiency of the current system increases with increased cathode exhaust recirculation. To evaluate and demonstrate the conceptualized design, the fully integrated system was modeled dynamically in Matlab–Simulink®. Simple proportional feedback with steady state feed-forward controls for power tracking, thermal management, and stable gas turbine operation were developed for the system. Simulations of the fully controlled system indicate that the system has a high efficiency over a large range of operating conditions, decent transient load following capability, fuel and ambient temperature disturbance rejection as well as the capability to operate with a varying number of fuel cell modules. The efforts here build upon prior work and combine the efforts of system design, system operation, component performance characterization and control to demonstrate hybrid transient capability in large-scale coal synthesis gas-based applications through simulation. Furthermore, the use of a modular fuel cell system design, the use of blower recirculation, and the need for integrated system controls are verified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.