Early host responses toward pathogens are essential for defense against infection. In Caenorhabditis elegans, the transcription factor, SKN-1, regulates cellular defenses during xenobiotic intoxication and bacterial infection. However, constitutive activation of SKN-1 results in pleiotropic outcomes, including a redistribution of somatic lipids to the germline, which impairs health and shortens lifespan. Here, we show that exposing C. elegans to Pseudomonas aeruginosa similarly drives the rapid depletion of somatic, but not germline, lipid stores. Modulating the epigenetic landscape refines SKN-1 activity away from innate immunity targets, which alleviates negative metabolic outcomes. Similarly, exposure to oxidative stress redirects SKN-1 activity away from pathogen response genes while restoring somatic lipid distribution. In addition, activating p38/MAPK signaling in the absence of pathogens, is sufficient to drive SKN-1–dependent loss of somatic fat. These data define a SKN-1– and p38-dependent axis for coordinating pathogen responses, lipid homeostasis, and survival and identify transcriptional redirection, rather than inactivation, as a mechanism for counteracting the pleiotropic consequences of aberrant transcriptional activity.
Caenorhabditis elegans is an exceptional model organism in which to study lipid metabolism and energy homeostasis. Many of its lipid genes are conserved in humans and are associated with metabolic syndrome or other diseases. Examination of lipid accumulation in this organism can be carried out by fixative dyes or label-free methods. Fixative stains like Nile red and oil red O are inexpensive, reliable ways to quantitatively measure lipid levels and to qualitatively observe lipid distribution across tissues, respectively. Moreover, these stains allow for high-throughput screening of various lipid metabolism genes and pathways. Additionally, their hydrophobic nature facilitates lipid solubility, reduces interaction with surrounding tissues, and prevents dissociation into the solvent. Though these methods are effective at examining general lipid content, they do not provide detailed information about the chemical composition and diversity of lipid deposits. For these purposes, label-free methods such as GC-MS and CARS microscopy are better suited, their costs notwithstanding.
In Caenorhabditis elegans, the primordial germ cells Z2 and Z3 are born during early embryogenesis and then held in a transcriptionally quiescent state where the genome is highly compacted. When hatched L1s feed, the germline genome decompacts, and RNAPII is abruptly and globally activated. A previously documented yet unexplained feature of germline genome activation in the worm is the appearance of numerous DNA breaks coincident with RNAPII transcription. Here, we show that the DNA breaks are induced by topoisomerase II and that they function to recruit the RUVB complex to chromosomes so that RUVB can decompact the chromatin. DNA break- and RUVB-mediated decompaction is required for zygotic genome activation. This work highlights the importance of global chromatin decompaction in the rapid induction of gene expression and shows that one way cells achieve global decompaction is through programmed DNA breaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.