Organelles are intracellular compartments which are themselves compartmentalized. Biogenic and metabolic processes are localized to specialized domains or microcompartments to enhance their efficiency and suppress deleterious side reactions. An example of intra-organellar compartmentalization is the pyrenoid in the chloroplasts of algae and hornworts. This microcompartment enhances the photosynthetic CO2-fixing activity of the Calvin-Benson cycle enzyme Rubisco, suppresses an energetically wasteful oxygenase activity of Rubisco, and mitigates limiting CO2 availability in aquatic environments. Hence, the pyrenoid is functionally analogous to the carboxysomes in cyanobacteria. However, a comprehensive analysis of pyrenoid functions based on its protein composition is lacking. Here we report a proteomic characterization of the pyrenoid in the green alga Chlamydomonas reinhardtii. Pyrenoid-enriched fractions were analyzed by quantitative mass spectrometry. Contaminant proteins were identified by parallel analyses of pyrenoid-deficient mutants. This pyrenoid proteome contains 190 proteins, many of which function in processes that are known or proposed to occur in pyrenoids: e.g. the carbon concentrating mechanism, starch metabolism or RNA metabolism and translation. Using radioisotope pulse labeling experiments, we show that pyrenoid-associated ribosomes could be engaged in the localized synthesis of the large subunit of Rubisco. New pyrenoid functions are supported by proteins in tetrapyrrole and chlorophyll synthesis, carotenoid metabolism or amino acid metabolism. Hence, our results support the long-standing hypothesis that the pyrenoid is a hub for metabolism. The 81 proteins of unknown function reveal candidates for new participants in these processes. Our results provide biochemical evidence of pyrenoid functions and a resource for future research on pyrenoids and their use to enhance agricultural plant productivity. Data are available via ProteomeXchange with identifier PXD004509.
The oxidation of biological molecules by reactive oxygen species (ROS) can render them inactive or toxic. This includes the oxidation of RNA, which appears to underlie the detrimental effects of oxidative stress, aging and certain neurodegenerative diseases. Here, we investigate the management of oxidized RNA in the chloroplast of the green alga Chlamydomonas reinhardtii. Our immunofluorescence microscopy results reveal that oxidized RNA (with 8-hydroxyguanine) is localized in the pyrenoid, a chloroplast microcompartment where CO 2 is assimilated by the Calvin cycle enzyme Rubisco. Results of genetic analyses support a requirement for the Rubisco large subunit (RBCL), but not Rubisco, in the management of oxidized RNA. An RBCL pool that can carry out such a 'moonlighting' function is revealed by results of biochemical fractionation experiments. We also show that human (HeLa) cells localize oxidized RNA to cytoplasmic foci that are distinct from stress granules, processing bodies and mitochondria. Our results suggest that the compartmentalization of oxidized RNA management is a general phenomenon and therefore has some fundamental significance.
Translation is localized within cells to target proteins to their proper locations. We asked whether translation occurs on the chloroplast surface in Chlamydomonas and, if so, whether it is involved in co-translational protein targeting, aligned spatially with localized translation by the bacterial-type ribosomes within this organelle, or both. Our results reveal a domain of the chloroplast envelope which is bound by translating ribosomes. Purified chloroplasts retained ribosomes and mRNAs encoding two chloroplast proteins specifically on this translation domain, but not a mRNA encoding a cytoplasmic protein. Ribosomes clusters were seen on this domain by electron tomography. Activity of the chloroplast-bound ribosomes is supported by results of the ribopuromycylation and puromycin-release assays. Co-translational chloroplast protein import is supported by nascent polypeptide dependency of the ribosome-chloroplast associations. This cytoplasmic translation domain aligns localized translation by organellar bacterial-type ribosomes in the chloroplast. This juxtaposition the dual translation systems facilitates the targeting and assembly of the polypeptide products.
Cytoplasmic RNA granules compartmentalize phases of the translation cycle in eukaryotes. We previously reported the localization of oxidized RNA to cytoplasmic foci called oxidized RNA bodies (ORBs) in human cells. We show here that ORBs are RNA granules in Saccharomyces cerevisiae. Several lines of evidence support a role of ORBs in the compartmentalization of no-go decay and ribosome quality control, the translation quality control pathways that recognize and clear aberrant mRNAs, including those with oxidized bases. Translation is required by these pathways and ORBs. Translation quality control factors localize to ORBs. A substrate of translation quality control, a stalled mRNA-ribosome-nascent chain complex, localizes to ORBS. Translation quality control mutants have altered ORB numbers, sizes, or both. In addition, we identify 68 ORB proteins, by immunofluorescence staining directed by proteomics, which further support their role in translation quality control and reveal candidate new factors for these pathways.
Cytoplasmic RNA granules compartmentalize processes involving translation. It remains unclear, however, whether any RNA granule carries out translation quality control, the pathways wherein defective mRNAs and nascent polypeptides are released from stalled ribosomes and targeted for degradation. We previously reported on the localization of oxidized RNA in human cells to cytoplasmic foci called oxidized RNA bodies (ORBs). Since oxidized mRNAs are substrates of translation quality control, we asked whether ORBs compartmentalize any of these pathways. Here, we identify ORBs in Saccharomyces cerevisiae and characterize them using immunofluorescence microscopy and proteomics. Our results show that ORBs are RNA granules distinct from processing bodies and stress granules, but share proteins and protein interactions with them. Several lines of evidence support a role of ORBs in the compartmentalization of central steps in the translation quality control pathways No-Go mRNA decay and ribosome quality control. Active translation is required by both translation quality control and ORBs. ORBs contain two substrates of translation quality control: oxidized RNA and a stalled mRNA-ribosome-nascent chain complex. Translation quality control factors localize to ORBs. Translation quality control mutants have altered ORB number per cell, size, or both. Therefore, ORBs are an intracellular hub of translational quality control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.