The purpose of this investigation was to assess the accuracy of the COSMED K4 b2 portable metabolic measurement system against the criterion Douglas bag (DB) method. During cycle ergometry on consecutive days, oxygen consumption (VO2), carbon dioxide production (VCO2), minute ventilation (VE), and respiratory exchange ratio (R) were measured at rest and during power outputs of 50, 100, 150, 200, and 250W. No significant differences (P > 0.05) were observed in VO2 between the K4 b2 and DB at rest and at 250W. Though the K4 b2 values were significantly higher (P<0.05) than DB values at 50, 100, 150, and 200 W, the magnitude of these differences was small (0.088, 0.092, 0.096, and 0.088 L x min(-1), respectively). VCO2 and VE values from the K4 b2 were significantly lower than the DB at 200 and 250 W, while no significant differences were observed from rest through 150W. The slight overestimation of VO2 (50-200 W) combined with the underestimation of VCO2 (200 and 250W) by the K4 b2 resulted in significantly lower R values at every stage. These findings suggest the COSMED K4 b2 portable metabolic measurement system is acceptable for measuring oxygen uptake over a fairly wide range of exercise intensities.
Among well-trained subjects heterogeneous in VO2max and running performance, vVO2max is the best predictor of running performance because it integrates both maximal aerobic power and the economy of running. The PTV is linked to the same physiological variables that determine vVO2max.
OBJECTIVE: To assess the interaction between leisure-time physical activity (LTPA) and occupational activity (OA) on the prevalence of obesity. DESIGN: Secondary data analysis of a population based cross-sectional US national sample (NHANES III). SUBJECTS: A total of 4889 disease-free, currently employed adults over age 20 y. MEASUREMENTS: Subjects body mass index (BMI) was categorized as (1) obese (BMI ! 30 kgam 2 ), or (2) non-obese (BMI`30 kgam 2 ). LTPA was divided into four categories: (1) no LTPA; (2) irregular LTPA; (3) regular moderate intensity LTPA; and (4) regular vigorous intensity LTPA. OA was grouped as (1) high OA and (2) low OA. Age, gender, race ± ethnicity, smoking status, urbanization classi®cation, alcohol consumption and income were statistically controlled. RESULTS: In all, 16.8% (s.e. 0.7) of the total subject population were obese (15.1% (s.e. 1.1) of men and 19.1% (s.e. 1.1) of women). Logistic regression revealed that compared to those who engage in no LTPA and have low levels of OA, the likelihood of being obese is 42% (95% CI 0.35, 0.96) lower for those who engage in no LTPA and have high OA, 48% (95% CI 0.32, 0.83) lower for those who have irregular LTPA and have high levels of OA, and about 50% lower for all those who have regular LTPA through moderate or vigorous activity levels regardless of OA level. CONCLUSION: When considering disease free adults above 20 y of age employed in high and low activity occupations, a high level of occupational activity is associated with a decreased likelihood of being obese.
The accuracy of a computerized metabolic system, using inspiratory and expiratory methods of measuring ventilation, was assessed in eight male subjects. Gas exchange was measured at rest and during five stages on a cycle ergometer. Pneumotachometers were placed on the inspired and expired side to measure inspired (VI) and expired ventilation (VE). The devices were connected to two systems sampling expired O(2) and CO(2) from a single mixing chamber. Simultaneously, the criterion (Douglas bag, or DB) method assessed VE and fractions of O(2) and CO(2) in expired gas (FE(O(2)) and FE(CO(2))) for subsequent calculation of O(2) uptake (VO(2)), CO(2) production (VCO(2)), and respiratory exchange ratio. Both systems accurately measured metabolic variables over a wide range of intensities. Though differences were found between the DB and computerized systems for FE(O(2)) (both inspired and expired systems), FE(CO(2)) (expired system only), and VO(2) (inspired system only), the differences were extremely small (FE(O(2)) = 0.0004, FE(CO(2)) = -0.0003, VO(2) = -0.018 l/min). Thus a computerized system, using inspiratory or expiratory configurations, permits extremely precise measurements to be made in a less time-consuming manner than the DB technique.
Aims-To examine the vascular changes occurring in three archival cases of acute multiple sclerosis, and to provide immunohistochemical evidence of early endothelial cell activation and vascular occlusion in this condition. Methods-Central nervous system tissues from three cases of acute active multiple sclerosis and six non-inflammatory controls were stained using the following methods: haematoxylin and eosin, Luxol fast blue, cresyl violet, Bielschowsky's silver, and reticulin. Tissues were also inmunostained with specific antibodies against collagen type IV, factor XIIIa, class II antigens, glial fibrillary acidic protein, and fibrinogen. Results-Early vascular endothelial cell activation which may progress to vasculitis and vascular occlusion including class II antigen expression and fibrin deposition were identified. The vascular changes were seen prior to cerebral parenchymal reaction and demyelination, and were not seen in control cerebral tissues.Conclusion-It is proposed that vascular endothelial cell activation may be an early and pivotal event in the evolution of multiple sclerosis, and that demyelination may have an ischaemic basis in this condition. The vascular endothelium may contain an early element in the evolution of multiple sclerosis. (J Clin Pathol 1994;47:129-133) Academic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.