Although hippocampal neurogenesis has been described in many adult mammals, the functional impact of this process on physiology and behavior remains unclear. In the present study, we used two independent methods to ablate hippocampal neurogenesis and found that each procedure caused a limited behavioral deficit and a loss of synaptic plasticity within the dentate gyrus. Specifically, focal X irradiation of the hippocampus or genetic ablation of glial fibrillary acidic protein-positive neural progenitor cells impaired contextual fear conditioning but not cued conditioning. Hippocampal-dependent spatial learning tasks such as the Morris water maze and Y maze were unaffected. These findings show that adult-born neurons make a distinct contribution to some but not all hippocampal functions. In a parallel set of experiments, we show that long-term potentiation elicited in the dentate gyrus in the absence of GABA blockers requires the presence of new neurons, as it is eliminated by each of our ablation procedures. These data show that new hippocampal neurons can be preferentially recruited over mature granule cells in vitro and may provide a framework for how this small cell population can influence behavior.long-term potentiation ͉ learning ͉ memory N ew neurons are born in the dentate gyrus (DG) of the hippocampus throughout the life of mammals (1) and derive from dividing progenitor cells located in the innermost part of the granule cell layer, a region called the subgranular zone. Young granule neurons integrate into the existing circuitry of the hippocampus, as evidenced by the development of functional synaptic inputs provided by the medial perforant path (MPP) and growth of axons to target cells in CA3 (2). Although a variety of environmental and pharmacological manipulations can affect neurogenesis (2, 3), it is unclear whether adult-born neurons provide a significant contribution to hippocampal function and, ultimately, how it might impact behavior.Recent studies have shown that various strategies to disrupt neurogenesis produce a limited impairment in some hippocampaldependent learning and memory tasks and in responses to antidepressant drugs (4-11). Unfortunately, the lack of spatial and cellular specificity provided by most ablation techniques has made it difficult to ascertain whether the consequent behavioral effects were caused by ablation of neurogenesis or other impairments. To circumvent these problems we have used two independent strategies of ablation. The first is a previously reported x-ray procedure that differs from similar methods in two ways: (i) the x-ray administration is restricted to a fraction of the brain containing the hippocampus and spares neurogenesis in the neighboring subventricular zone; and (ii) mice are allowed to recover for 3 months before testing to allow for the disappearance of markers of inflammation, such as reactive microglia (9). The second method of ablation is a genetic strategy that directly targets dividing progenitors throughout the brain and avoids potential radi...
Chronic treatments with selective serotonin reuptake inhibitors (SSRIs) have been shown to increase hippocampal neurogenesis. However, it is not known whether SSRIs impact the maturation and functional integration of newborn neurons. Here we examined the effects of subchronic and chronic fluoxetine on the structural and physiological properties of young granule cells. Our results show that doublecortin-positive immature neurons displayed increased dendritic arborization after chronic fluoxetine treatment. In addition, chronic but not subchronic fluoxetine elicited a decrease in the number of newborn neurons expressing immature markers and a corresponding increase in those expressing mature markers. These results suggest that chronic fluoxetine accelerates the maturation of immature neurons. We also investigated the effects of fluoxetine on a form of neurogenesis-dependent long-term potentiation (LTP) in the dentate gyrus. This form of LTP was enhanced by chronic fluoxetine, and ablation of neurogenesis with x-irradiation completely blocked the effects of chronic fluoxetine on LTP. Finally, we demonstrated that the behavioral effect of fluoxetine in the noveltysuppressed feeding test requires chronic administration and is blocked by x-irradiation. These results show that the effects of fluoxetine on LTP and behavior both require neurogenesis and follow a similar delayed time course. The effects of chronic fluoxetine on the maturation and functional properties of young neurons may therefore be necessary for its anxiolytic/antidepressant activity and contribute to its delayed onset of therapeutic efficacy.
Serotonergic fibers broadly innervate the thalamus and may influence the sleep wake cycle, attention, and other processes through modulation of neurons in this structure. However, the actions of serotonin in the dorsal thalamus have been investigated in detail only in the dorsal lateral geniculate nucleus. In the present study, we examined the action of serotonin in several different regions of the ferret dorsal thalamus, including the associative nuclei, using the in vitro slice preparation and intracellular recording techniques. In nearly all nuclei examined, the predominant action of serotonin was one of hyperpolarization and inhibition of the tonic firing mode. The magnitude of the hyperpolarizing response decreased with age and varied greatly across and somewhat within nuclei maintaining the following relationship (in descending order of magnitude): lateral posterior, lateral dorsal, pulvinar, mediodorsal, center median, anteroventral, central lateral, ventral basal, and medial geniculate. This hyperpolarization is elicited through two mechanisms: one direct and the other via local interneurons. The direct action occurs through an increase in potassium conductance mediated through the 5-HT(1A) receptor. This conclusion is supported by the findings that it persists in the presence of tetrodotoxin and block of GABAergic synaptic transmission, the reversal potential shifts in a Nernstian fashion with changes in extracellular potassium concentration, and the response is antagonized by the 5-HT(1A) antagonist WAY100635 and mimicked by the application of the 5-HT(1A)-selective agonist 8-OH DPAT. The second mechanism by which 5-HT evoked a hyperpolarization was through the activation of local interneurons. In slices in which GABA receptors were not blocked, 5-HT application increased the frequency and amplitude of spontaneous inhibitory postsynaptic potentials (IPSPs) occurring in thalamocortical neurons. Application of 5-HT to physiologically or morphologically identified interneurons evoked a prolonged suprathreshold depolarization. Our results suggest that serotonergic inputs act differentially across the thalamus in a complex manner involving direct and indirect mechanisms. It appears that 5-HT has a greater direct postsynaptic inhibitory influence in the posterior, medial, and intralaminar nuclei than in the primary sensory nuclei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.