A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.
We study subgap transport from a superconductor through a double quantum dot
with large on-site Coulomb repulsion to two normal leads. Non-local
superconducting correlations in the double dot are induced by the proximity to
the superconducting lead, detectable in non-local Andreev transport that splits
Cooper pairs in locally separated, spin-entangled electrons. We find that the
$I$--$V$ characteristics are strongly asymmetric: for a large bias voltage of
certain polarity, transport is blocked by populating the double dot with states
whose spin symmetry is incompatible with the superconductor. Furthermore, by
tuning gate voltages one has access to splitting of the Andreev excitation
energies, which is visible in the differential conductance.Comment: 5 pages, 4 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.