Background Lutzomyia longipalpis is the primary vector of American visceral leishmaniasis. There is strong evidence that L. longipalpis is a species complex, but until recently the existence of sibling species among Brazilian populations was considered a controversial issue. In addition, there is still no consensus regarding the number of species occurring in this complex.Methodology/Principal FindingsUsing period, a gene that controls circadian rhythms and affects interpulse interval periodicity of the male courtship songs in Drosophila melanogaster and close relatives, we analyzed the molecular polymorphism in a number of L. longipalpis samples from different regions in Brazil and compared the results with our previously published data using the same marker. We also studied the male copulation songs and pheromones from some of these populations. The results obtained so far suggest the existence of two main groups of populations in Brazil, one group representing a single species with males producing Burst-type copulation songs and cembrene-1 pheromones; and a second group that is more heterogeneous and probably represents a number of incipient species producing different combinations of Pulse-type songs and pheromones.Conclusions/SignificanceOur results reveal a high level of complexity in the divergence and gene-flow among Brazilian populations of the L. longipalpis species complex. This raises important questions concerning the epidemiological consequences of this incipient speciation process.
Two major components have been detected in the headspace volatiles of adult male Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) that are not present in the headspace volatiles of adult females. The compounds were identified as (R)-lavandulyl acetate and neryl (S)-2-methylbutanoate by comparison with synthetic standards using gas chromatography (GC), GC mass spectrometry (MS), and chiral GC. Field trials were conducted with synthetic compounds in naturally infested crops of sweet pepper grown in large plastic greenhouses in Spain. The catch of adult females and males on blue sticky traps was increased by neryl (S)-2-methylbutanoate alone or by a 1:1 blend of (R)-lavandulyl acetate and neryl (S)-2-methylbutanoate, but (R)-lavandulyl acetate was not active alone. This is the first identification of an aggregation pheromone in the order Thysanoptera. The possible role of (R)-lavandulyl acetate is discussed.
Although the phlebotomine sandfly Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae) is generally accepted to be a species complex, it is unclear how many members there are, how they are related and which are the main vectors of leishmaniasis. The vectorial capacity of each sibling species is likely to differ, thus a means of identifying the most important vector species is of critical importance to the epidemiology and control of this debilitating disease in South and Central America. In Brazil four chemotypes have been distinguished by sex pheromone analysis. In this study the sex pheromone extracts of L. longipalpis from six regions of Brazil were analysed in detail. Samples included the sympatric 1-spot, 2-spot and intermediate spot morphotypes from Sobral, Ceará State. The results strongly suggest that members of the complex that produce different sex pheromones are reproductively isolated, thus strengthening the argument that the different chemotypes represent true sibling species. The study also found significant differences in morphology and the amounts of sex pheromone produced by members of each chemotype from different parts of Brazil, which suggests population substructuring that has not previously been recognized. Evidence of a fifth chemotype in Brazil is also presented.
BackgroundAmerican visceral leishmaniasis (AVL) is an emerging disease in the state of São Paulo, Brazil. Its geographical expansion and the increase in the number of human cases has been linked to dispersion of Lutzomyia longipalpis into urban areas. To produce more accurate risk maps we investigated the geographic distribution and routes of expansion of the disease as well as chemotype populations of the vector.Methodology/Principal FindingsA database, containing the annual records of municipalities which had notified human and canine AVL cases as well as the presence of the vector, was compiled. The chemotypes of L. longipalpis populations from municipalities in different regions of São Paulo State were determined by Coupled Gas Chromatography – Mass Spectrometry. From 1997 to June 2014, L. longipalpis has been reported in 166 municipalities, 148 of them in the Western region. A total of 106 municipalities were identified with transmission and 99 were located in the Western region, where all 2,204 autochthonous human cases occurred. Both the vector and the occurrence of human cases have expanded in a South-easterly direction, from the Western to central region, and from there, a further expansion to the North and the South. The (S)-9-methylgermacrene-B population of L. longipalpis is widely distributed in the Western region and the cembrene-1 population is restricted to the Eastern region.Conclusion/SignificanceThe maps in the present study show that there are two distinct epidemiological patterns of AVL in São Paulo State and that the expansion of human and canine AVL cases through the Western region has followed the same dispersion route of only one of the two species of the L. longipalpis complex, (S)-9-methylgermacrene-B. Entomological vigilance based on the routes of dispersion and identification of the chemotype population could be used to identify at-risk areas and consequently define the priorities for control measures.
In this paper we review the natural history of pheromone communication and the current diversity of aggregation-sex pheromones in the sand fly Lutzomyia longipalpis. This species complex is the main vector of Leishmania infantum, the agent of visceral leishmaniasis in the Americas. The identification of variation in pheromone chemotypes combined with molecular and sound analyses have all contributed to our understanding of the extent of divergence among cryptic members of this complex. The importance of chemical signals as pre-mating barriers and drivers of speciation is discussed. Moreover, the importance of aggregation-sex pheromones as sexually selected signals is highlighted with evidence from the literature suggesting their potential role in species and mate recognition as well as mate assessment. The distinct evolutionary forces possibly involved are briefly reviewed and discussed in the context of this intriguing insect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.