The management of the riparian zone has been suggested as a technique for controlling the amounts of phosphorus (P) entering watercourses draining pasture catchments. A study was therefore made of P entering a stream from various sources (rainfall, surface and subsurface derived runoff, direct fallout from aerial topdressing), with the object of providing a rational basis for the design of effective riparian management schemes. P entrained in surface runoff could account for virtually all of the P entering the stream during storms. Approximately 20 per cent of the annual P export from the catchment could be accounted for by direct aerial input of P to the stream during autumn fertilizer topdressing. More than 85 per cent of the P was exported from the catchment as particulate P. Stream sediment had higher P sorption capacities, and were enriched with P relative to the soils from which they were derived. There was a pronounced seasonal variation in sediment enrichment which could be predicted (r2 = 0-92) by the logarithm of the rainfall since fertilizer topdressing (LNFERT) and flood intensity. The amount of P lost in streamflow during any flood event was predicted (3 = 0.94) by peak flow, seven day antecedent peak flow and LNFERT. Approximately 40 per cent of the 1.3 kg P ha-' exported during 1981 occurred in four storms with recurrence intervals of more than three months. From a P budget compiled from nine events it was hypothesized that the stream acted as a net sink for P at baseflow and low-medium intensity floods but was a source of P at higher flood intensities.It was concluded that P losses from hill pasture catchments could be reduced by avoidance of direct application of P fertilizer to the stream channel, and by fencing out stock from seasonally saturated areas during periods of saturation. The ultimate success of the latter technique would depend on whether buffer vegetation could retain accumulated P during extreme storm events.
The processes influencing nutrient (phosphorus and nitrogen) renovation in a natural wetland which had received oxidation pond effluent for twelve years were studied, and compared with current literature perceptions. Mass transport studies showed that 30–70% of the influent P was removed from the water column, which was much greater than published values suggest could be predicted for this highly loaded (∼ 34 g P m−2 y−1) system. Sediment traps studies showed that deposition of particulate P immediately downstream of confluences with arms of the wetland not impacted by sewage effluent (natural wetlands) was the dominant cause of P removal. Separation of the deposited-P into chemically definable fractions along with studies on the water chemistry, suggested that P deposition was associated with iron-organic complexes contributed dominantly from the natural wetlands. Considerable spatial and temporal heterogeneity was also demonstrated for nitrogen transformations. During summer most of the influent-N was in nitrate form which was all transformed during passage through the wetland. Isotope (15N) dilution studies indicated that ∼ 60–70% was denitrified, 25–35% converted to ammonium (dissimilatory reduction), and 5–10% assimilated. For most of the year, however, influent N was mainly in reduced forms. Despite this, significant quantities of nitrate were exported from the wetland especially at higher flows in spring-early summer. Assays on the sediment showed that there was a marked increase in nitrification activity at the confluence with natural wetlands. It is suggested that marked changes in sediment redox potential at these confluence sites provide ideal conditions for nitrification of sorbed ammonium which is subsequently flushed from the system in ‘flood events’. The distribution and type of nutrient processing observed in this wetland are attributable to its configuration. The implication of these results to the sustainability of nutrient renovation in wetland treatment systems is discussed.
SUMMARY 1. A field study was made of the spatial distribution of denitrification activity in the sediment of the River Dorn, Oxfordshire, England. 2. An assay of denitrifying enzyme activity was used to examine the distribution of denitrification with depth in cores of sediment representative of the types found in the stream. The maximum activity recorded in a predominantly silt sediment core was 5 times greater than that recorded in a sandy gravel core. In both fine sand and silt cores, peaks in denitrifier enzyme activity were shown to correspond to the limit of the nitrate diffusion front. At this depth the redox potential dropped rapidly from + 300 mV to 0 or less. Denitrifying enzyme activity in the stream water was negligible. 3.In situdenitrification activity (I DA) measurements were carried out in an 800 m reach of the Dorn using the acetylene inhibition technique on small sediment cores. Concurrent measurements were also made of stream depth and velocity, nitrate concentration in the interstitial water, and the wet bulk density, loss on ignition, mineraliz‐ able carbon and total nitrogen contents of the sediment. Mineralizable carbon was the variable which showed the best correlation with I DA. Highest IDAs were associated with accumulations of fine‐grained sediment at meander bends. Mean IDAs measured under flood conditions were significantly higher (P<0.05) than those measured under baseflow. It was estimated that denitrification reduced the nitrate load in the River Dorn by 15% under summer baseflow conditions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.