Clear experimental evidence from X-ray photoelectron spectroscopy and (31)P NMR spectroscopy has been obtained for the first time to confirm that the combination of Ag(+) cation with [L-Au](+) results in the formation of different complexes in solution. Re-evaluation of literature-reported gold-catalyzed reactions revealed a significant difference in the reactivities with and without silver. In extreme cases (more than "rare"), the conventional [L-Au](+) catalysts could not promote the reaction without the presence of silver. This investigation has therefore revealed a long-overlooked "silver effect" in gold catalysis and should lead to revision of the actual mechanism.
The discovery of transition metal complexes capable of promoting general, catalyst-controlled and selective carbon-hydrogen (C-H) bond amination of activated secondary C-H bonds over tertiary alkyl C(sp(3))-H bonds is challenging, as substrate control often dominates when reactive nitrene intermediates are involved. In this letter, we report the design of a new silver complex, [(Py5Me2)AgOTf]2, that displays general and good-to-excellent selectivity for nitrene insertion into propargylic, benzylic, and allylic C-H bonds over tertiary alkyl C(sp(3))-H bonds.
A newly designed silver complex generated in situ is applied to nitrene insertion into propargylic, allylic, and benzylic C—H bonds competing to tertiary alkyl C(sp3)—H bonds are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.