The development of readily tunable
and regioselective C–H
functionalization reactions that operate solely through catalyst control
remains a challenge in modern organic synthesis. Herein, we report
that simple silver catalysts supported by common nitrogenated ligands
can be used to tune a nitrene transfer reaction between two different
types of C–H bonds. The results reported herein represent the
first example of ligand-controlled and site-selective silver-promoted
C–H amination.
The development of new catalysts for selective nitrene transfer is a continuing area of interest. In particular, the ability to control the chemoselectivity of intermolecular reactions in the presence of multiple reactive sites has been a long-standing challenge in the field. In this paper, we demonstrate examples of silver-catalyzed, nondirected, intermolecular nitrene transfer reactions that are both chemoselective and flexible for aziridination or C‒H insertion, depending on the choice of ligand. Experimental probes present a puzzling picture of the mechanistic details of the pathways mediated by [(tBu3tpy)AgOTf]2 and (tpa)AgOTf. Computational studies elucidate these subtleties and provide guidance for the future development of new catalysts exhibiting improved tunability in group transfer reactions.
The discovery of transition metal complexes capable of promoting general, catalyst-controlled and selective carbon-hydrogen (C-H) bond amination of activated secondary C-H bonds over tertiary alkyl C(sp(3))-H bonds is challenging, as substrate control often dominates when reactive nitrene intermediates are involved. In this letter, we report the design of a new silver complex, [(Py5Me2)AgOTf]2, that displays general and good-to-excellent selectivity for nitrene insertion into propargylic, benzylic, and allylic C-H bonds over tertiary alkyl C(sp(3))-H bonds.
Thiostrepton is a potent antibiotic against a broad range of Gram‐positive bacteria, but its medical applications have been limited by its poor aqueous solubility. In this work, the first C(sp2)−H amidation of dehydroalanine (Dha) residues was applied to the site selective modification of thiostrepton to prepare a variety of derivatives. Unlike all prior methods for the modification of thiostrepton, the alkene framework of the Dha residue is preserved and with complete selectivity for the Z‐stereoisomer. Additionally, an aldehyde group was introduced by C−H amidation, enabling oxime ligation for the installation of an even greater range of functionality. The thiostrepton derivatives generally maintain antimicrobial activity, and importantly, eight of the derivatives displayed improved aqueous solubility (up to 28‐fold), thereby addressing a key shortcoming of this antibiotic. The exceptional functional group compatibility and site selectivity of CoIII‐catalyzed C(sp2)−H Dha amidation suggests that this approach could be generalized to other natural products and biopolymers containing Dha residues.
A review of recent developments in silver(I)-catalyzed nitrene insertions into olefin and C-H bonds is presented, with a particular emphasis on reactions where the chemoselectivity can be tuned to promote either aziridination or C-H amination. The scope and synthetic utility of various silver catalysts are described, as well as preliminary investigations into the mechanisms of silver-catalyzed aminations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.