The design and optimization of biological systems is an inherently complex undertaking that requires careful balancing of myriad synergistic and antagonistic variables. However, despite this complexity, much synthetic biology research is predicated on One Factor at A Time (OFAT) experimentation; the genetic and environmental variables affecting the activity of a system of interest are sequentially altered while all other variables are held constant. Beyond being time and resource intensive, OFAT experimentation crucially ignores the effect of interactions between factors. Given the ubiquity of interacting genetic and environmental factors in biology this failure to account for interaction effects in OFAT experimentation can result in the development of suboptimal systems. To address these limitations, an increasing number of studies have turned to Design of Experiments (DoE), a suite of methods that enable efficient, systematic exploration and exploitation of complex design spaces. This review provides an overview of DoE for synthetic biologists. Key concepts and commonly used experimental designs are introduced, and we discuss the advantages of DoE as compared to OFAT experimentation. We dissect the applicability of DoE in the context of synthetic biology and review studies which have successfully employed these methods, illustrating the potential of statistical experimental design to guide the design, characterization, and optimization of biological protocols, pathways, and processes.
The judicious choice of promoter to drive gene expression remains one of the most important considerations for synthetic biology applications. Constitutive promoter sequences isolated from nature are often used in laboratory settings or small-scale commercial production streams, but unconventional microbial chassis for new synthetic biology applications require well-characterized, robust and orthogonal promoters. This review provides an overview of the opportunities and challenges for synthetic promoter discovery and design, including molecular methodologies, such as saturation mutagenesis of flanking regions and mutagenesis by error-prone PCR, as well as the less familiar use of computational and statistical analyses for de novo promoter design.
Geobacillus thermoglucosidans DSM2542 is an industrially important microbe, however the complex nutritional requirements of Geobacilli confound metabolic engineering efforts. Previous studies have utilised semi-defined media recipes that contain complex, undefined, biologically derived nutrients which have unknown ingredients that cannot be quantified during metabolic profiling. This study used design of experiments to investigate how individual nutrients and interactions between these nutrients contribute to growth. A mathematically derived defined medium has been formulated that has been shown to robustly support growth of G . thermoglucosidans in two different environmental conditions (96-well plate and shake flask) and with a variety of lignocellulose-based carbohydrates. This enabled the catabolism of industrially relevant carbohydrates to be investigated.
Modeling parts and circuits represents a significant roadblock to automating the Design-Build-Test-Learn cycle in synthetic biology. Once models are developed, discriminating among them requires informative data, computational resources, and skills that might not be readily available. The high cost entailed in model discrimination frequently leads to subjective choices on the selected structures and, in turn, to suboptimal models. Here, we outline frequentist and Bayesian approaches to model discrimination. We ranked three candidate models of a genetic toggle switch, which was adopted as a test case, according to the support from in vivo data. We show that, in each framework, efficient model discrimination can be achieved via optimally designed experiments. We offer a dynamical-systems interpretation of our optimization results and investigate their sensitivity to key parameters in the characterization of synthetic circuits. Our approach suggests that optimal experimental design is an effective strategy to discriminate between competing models of a gene regulatory network. Independent of the adopted framework, optimally designed perturbations exploit regions in the input space that maximally distinguish predictions from the competing models.
Well-characterized promoter collections for synthetic biology applications are not always available in industrially relevant hosts. We developed a broadly applicable method for promoter identification in atypical microbial hosts that requires no a priori understanding of cis-regulatory element structure. This novel approach combines bioinformatic filtering with rapid empirical characterization to expand the promoter toolkit and uses machine learning to improve the understanding of the relationship between DNA sequence and function. Here, we apply the method in Geobacillus thermoglucosidasius, a thermophilic organism with high potential as a synthetic biology chassis for industrial applications. Bioinformatic screening of G. kaustophilus, G. stearothermophilus, G. thermodenitrif icans, and G. thermoglucosidasius resulted in the identification of 636 100 bp putative promoters, encompassing the genome-wide design space and lacking known transcription factor binding sites. Eighty of these sequences were characterized in vivo, and activities covered a 2-log range of predictable expression levels. Seven sequences were shown to function consistently regardless of the downstream coding sequence. Partition modeling identified sequence positions upstream of the canonical −35 and −10 consensus motifs that were predicted to strongly influence regulatory activity in Geobacillus, and artificial neural network and partial least squares regression models were derived to assess if there were a simple, forward, quantitative method for in silico prediction of promoter function. However, the models were insufficiently general to predict pre hoc promoter activity in vivo, most probably as a result of the relatively small size of the training data set compared to the size of the modeled design space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.