Deuterium nuclear magnetic resonance spectroscopy and differential scanning calorimetry are used to map the phase boundaries of mixtures of cholesterol and chain-perdeuteriated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine at concentrations from 0 to 25 mol % cholesterol. Three distinct phases can be identified: the L alpha or liquid-crystalline phase, the gel phase, and a high cholesterol concentration phase, which we call the beta phase. The liquid-crystalline phase is characterized by highly flexible phospholipid chains with rapid axially symmetric reorientation; the gel phase has much more rigid lipid chains, and the motions are no longer axially symmetric on the 2H NMR time scale; the beta phase is characterized by highly ordered (rigid) chains and rapid axially symmetric reorientation. In addition, we identify three regions of two-phase coexistence. The first of these is a narrow L alpha/gel-phase coexistence region lying between 0 and about 6 mol % cholesterol at temperatures just below the chain-melting transition of the pure phospholipid/water dispersions, at 37.75 degrees C. The dramatic changes in the 2H NMR line shape which occur on passing through the phase transition are used to map out the boundaries of this narrow two-phase region. The boundaries of the second two-phase region are determined by 2H NMR difference spectroscopy, one boundary lying near 7.5 mol % cholesterol and running from 37 down to at least 30 degrees C; the other boundary lies near 22 mol % cholesterol and covers the same temperature range. Within this region, the gel and beta phases coexist. As the temperature is lowered below about 30 degrees C, the phospholipid motions reach the intermediate time scale regime of 2H NMR so that spectral subtractions become difficult and unreliable. The third two-phase region lies above 37 degrees C, beginning at a eutectic point somewhere between 7.5 and 10 mol % cholesterol and ending at about 20 mol %. In this region, the L alpha and beta phases are in equilibrium. The boundaries for this region are inferred from differential scanning calorimetry traces, for the boundary between the L alpha- and the two-phase region, and from a dramatic sharpening of the NMR peaks on crossing the boundary between the two-phase region and the beta-phase region. In this region, the technique of difference spectroscopy fails, presumably because the diffusion rate in both the L alpha- and beta-phase domains is so rapid that phospholipid molecules exchange rapidly between domains on the experimental time scale.
Deuterium magnetic resonance is applied to the study of the liquid crystalline and gel phases, and of the phase transition, of a multilamellar dispersion of chain perdeuterated (d62)-dipalmitoyl phosphatidylcholine/H2O. Analysis of the deuterium spectra in terms of the moments of the spectra allows one to make quantitative statements concerning the distribution of quadrupolar splittings even in complicated situations, e.g., when using perdeuterated sampled or when there are mixed phases. This analysis indicates that d62-dipalmitoyl phosphatidylcholine in excess H2O undergoes a sharp phase transition (with a width of less than 1 degree C) at approximately 37 degrees C and that there appears to be hysteresis in the phase transition of approximately 1 degree C. In the lamellar liquid crystalline phase above 37 degrees C the spectra show a number of well-resolved features whose quadrupolar splittings can be followed as the temperature is varied. The gel phase near 20 degrees C possesses a very broad, almost featureless spectrum that does not seem to support a model of the gel phase wherein the hydrocarbon chains are fully extended in the all-trans conformation. At temperatures near 0 degrees C the spectra clearly indicate that a large fraction of the lipid molecules cease the rotation about their long axes, giving a spectrum more characteristic of a rigid or solid sample. These results give a picture of the gel phase as a phase characterized by considerable hydrocarbon chain disorder near 20 degrees C and becoming a more solid-like phase near 0 degrees C. The spin-lattice relaxation time, T1, has been measured at 20 degrees C in the gel phase, and at 37 and 45 degrees C in the liquid crystalline phase. The values of T1 obtained for each of the resolvable peaks in the spectrum at 37 degrees C are compared to the values (for each peak) of T2e, the decay time of the quadrupolar echo, obtained at the same temperature. These results are discussed in terms of a simple two-motion model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.