Casts of forelimb elements of the Cretaceous theropod dinosaur Acrocanthosaurus atokensis were manually manipulated to determine range of motion and infer function. It was found that the humerus can swing posteriorly into a horizontal position but can neither swing laterally to glenoid height nor anteriorly much beyond the glenoid. The forearm can approach but not achieve full extension and right-angle flexion. Pronation and supination are precluded by immobility of the radius relative to the ulna. Motion also seems to be restricted at the wrist. The palm faces medially, and digital movement is subtransverse. All three digits are capable of extreme hyper-extension. Digits I and II converge during flexion. Only digit III can be abducted or adducted. The limited anterior range of brachial motion infers that Acrocanthosaurus first apprehended prey orally, using the forelimb afterwards to secure its grip or deliver fatal blows. Acrocanthosaurus could only manually grasp prey that was beneath its chest, towards which it may have used its mouth to move prey. Struggling prey would have impaled itself further upon the permanently and strongly flexed first ungual. The range of motion in the forelimb of Acrocanthosaurus resembles that of Herrerasaurus and Dilophosaurus, and exceeds that of Tyrannosaurus. Acrocanthosaurus exhibits a greater manual range of motion than ornithomimid and deinonychosaurian coelurosaurs, but less at the shoulder and elbow. Coelurosaurian theropods exhibit reduced digital flexion and hyper-extension, which suggests a change in the use of the manus in coelurosaurs.
The inclination of the scapular blade and the resting pose of the forelimb in dinosaurs differ among reconstructions and among skeletal mounts. For most dinosaurian taxa, no attempt has previously been made to quantify the correct resting positions of these elements. Here, we used data from skeletons preserved in articulation to quantify the resting orientations of the scapula and forelimb in dinosaurs. Specimens were included in the study only if they were preserved lying on their sides; for each specimen the angle between forelimb bones at a given joint was included in the analysis only if the joint was preserved in articulation. Using correlation analyses of the angles between the long axis of the sacrum, the first dorsal centrum, and the scapular blade in theropods and Eoraptor, we found that vertebral hyperextension does not influence scapular orientation in saurischians. Among examined taxa, the long axis of the scapular blade was found to be most horizontal in bipedal saurischians, most vertical in basal ornithopods, and intermediate in hadrosauroids. We found that in bipedal dinosaurs other than theropods with semilunate carpals, the resting orientation of the elbow is close to a right angle and the resting orientation of the wrist is such that the hand exhibits only slight ulnar deviation from the antebrachium. In theropods with semilunate carpals the elbow and wrist are more flexed at rest, with the elbow at a strongly acute angle and with the wrist approximately at a right angle. The results of our study have important implications for correct orientations of bones in reconstructions and skeletal mounts. Here, we provide recommendations on bone orientations based on our results.
2003. The anatomy of a range expansion: changes in cranial morphology and rates of energy extraction for North American red squirrels from different latitudes. -Oikos 102: 33 -44.Species with expanding ranges provide unique opportunities to examine environmentally induced adaptations in ecological traits and anatomical characteristics. Since the late 1800s, the North American red squirrel (Tamiasciurus hudsonicus) has expanded its range into the central hardwoods of the United States in conjunction with increasing agricultural fragmentation. We examined whether red squirrels from the central hardwoods (west-central Indiana, USA) displayed differences in foraging behaviors and morphology relative to red squirrels from conifer-dominated environments (upper peninsula of Michigan, USA), a biome in which red squirrels evolved. Specifically, we measured rates of energy extraction, variation in cranial morphology, and diet preference between red squirrels from both regions. In addition, we compared foraging behaviors of red squirrels from the central hardwoods to those of a competitor that coevolved with nut-producing trees, the gray squirrel (Sciurus carolinensis). Red squirrels from Indiana and Michigan differed significantly in the efficiency with which they used food items, with individuals from each region extracting calories at a more rapid rate for items that were common in their region. The enhanced efficiency of southern red squirrels feeding on black walnuts (Juglans nigra) was correlated with geographic differences in cranial morphology; skulls of southern squirrels were larger, with longer jaws and higher metrics associated with greater mandibular force than northern squirrels. Contrary to our expectations, red squirrels from Indiana and Michigan did not differ qualitatively in preferences for food items, suggesting that diet choice may be governed by perishability of food items rather than by rates of energy extraction. Gray squirrels were more efficient than Indiana red squirrels in using all food items, and differed only slightly from red squirrels with regard to preference for food items. Measures of efficiency of resource use, after accounting for species-specific metabolic requirements, suggest that red squirrels are unlikely to compensate ecologically for declining gray squirrel populations in fragmented portions of the central hardwoods, with potentially adverse effects for forest regeneration and succession. Our results demonstrate that invading species can display significant flexibility in adapting to new environments, but they may not be flexible enough to exploit resources in a manner comparable to native species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.