Casts of forelimb elements of the Cretaceous theropod dinosaur Acrocanthosaurus atokensis were manually manipulated to determine range of motion and infer function. It was found that the humerus can swing posteriorly into a horizontal position but can neither swing laterally to glenoid height nor anteriorly much beyond the glenoid. The forearm can approach but not achieve full extension and right-angle flexion. Pronation and supination are precluded by immobility of the radius relative to the ulna. Motion also seems to be restricted at the wrist. The palm faces medially, and digital movement is subtransverse. All three digits are capable of extreme hyper-extension. Digits I and II converge during flexion. Only digit III can be abducted or adducted. The limited anterior range of brachial motion infers that Acrocanthosaurus first apprehended prey orally, using the forelimb afterwards to secure its grip or deliver fatal blows. Acrocanthosaurus could only manually grasp prey that was beneath its chest, towards which it may have used its mouth to move prey. Struggling prey would have impaled itself further upon the permanently and strongly flexed first ungual. The range of motion in the forelimb of Acrocanthosaurus resembles that of Herrerasaurus and Dilophosaurus, and exceeds that of Tyrannosaurus. Acrocanthosaurus exhibits a greater manual range of motion than ornithomimid and deinonychosaurian coelurosaurs, but less at the shoulder and elbow. Coelurosaurian theropods exhibit reduced digital flexion and hyper-extension, which suggests a change in the use of the manus in coelurosaurs.
BackgroundThe Yellow Cat Member of the Cedar Mountain Formation (Early Cretaceous, Barremian? – Aptian) of Utah has yielded a rich theropod fauna, including the coelurosaur Nedcolbertia justinhofmanni, the therizinosauroid Falcarius utahensis, the troodontid Geminiraptor suarezarum, and the dromaeosaurid Utahraptor ostrommaysorum. Recent excavation has uncovered three new dromaeosaurid specimens. One specimen, which we designate the holotype of the new genus and species Yurgovuchia doellingi, is represented by a partial axial skeleton and a partial left pubis. A second specimen consists of a right pubis and a possibly associated radius. The third specimen consists of a tail skeleton that is unique among known Cedar Mountain dromaeosaurids.Methodology/Principal Findings
Y. doellingi resembles Utahraptor ostrommaysorum in that its caudal prezygapophyses are elongated but not to the degree present in most dromaeosaurids. The specimen represented by the right pubis exhibits a pronounced pubic tubercle, a velociraptorine trait that is absent in Y. doellingi. The specimen represented by the tail skeleton exhibits the extreme elongation of the caudal prezygapophyses that is typical of most dromaeosaurids. Here we perform a phylogenetic analysis to determine the phylogenetic position of Y. doellingi. Using the resulting phylogeny as a framework, we trace changes in character states of the tail across Coelurosauria to elucidate the evolution of the dromaeosaurid tail.Conclusions/SignificanceThe new specimens add to the known diversity of Dromaeosauridae and to the known diversity within the Yellow Cat paleofauna. Phylogenetic analysis places Y. doellingi in a clade with Utahraptor, Achillobator, and Dromaeosaurus. Character state distribution indicates that the presence of intermediate-length caudal prezygapophyses in that clade is not an evolutionarily precursor to extreme prezygapophyseal elongation but represents a secondary shortening of caudal prezygapophyses. It appears to represent part of a trend within Dromaeosauridae that couples an increase in tail flexibility with increasing size.
Mononykus olecranus, a theropod dinosaur from the Upper Cretaceous of Mongolia, ex hibits reduced forelimbs with a single functional digit. These bizarre forelimbs have aroused great curiosity as to the behavior of the animal, but until now no functional study on the forelimbs of Mononykus has been undertaken. Here I show that the orientation and range of motion in the forelimb elements of Mononykus are such that the humeri sprawl laterally, the antebrachia are held subvertically, the palms face ventrally, and intramanual movement is restricted to subparasagittal mo tion. This is a radical departure from the typical theropod condition, in which the palms face me dially and intramanual movement is transverse. The results of this study confirm that the forelimbs of Mononykus could not have been used to grasp prey or dig burrows, but were well suited for scratch-digging or hook-and-pull movements such as are used by extant anteaters and pangolins to open tough insect nests. Mononykus likely occupied a niche equivalent to that of an anteater or pangolin, an unusual niche for a dinosaur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.