Two feeding trials were conducted with juvenile largemouth bass Micropterus salmoides to evaluate alternative plant and animal source proteins for their ability to replace fish meal in practical diets. The first trial was designed to identify the most promising candidates. The second trial was conducted to evaluate how much of the fish meal could be replaced by those candidates. In Study 1, feed‐trained largemouth bass (3.1 ± 0.7 g) were randomly stocked into 18114‐L glass aquaria at 25 fish per aquarium. Fish were fed one of six experimental diets, each containing approximately 38% crude protein and 10% crude lipid, to apparent satiation twice daily. The control diet (CTL) contained 30% fish meal and 34.5% soybean meal. Diets 2–6 each contained 15% fish meal and at least 34.5% soybean meal with the remainder of the protein made up of either meat and bone meal (MBM), soybean meal (SBM), poultry by‐product meal (PBM), a 50150 mixture of blood meal and corn gluten meal (BM/CG), or 50150 mixture of hydrolyzed feather meal and soybean meal (FMISBM). There were three replicate aquaria per dietary treatment. After 12 wk, there was no significant difference (P > 0.05) among treatments in survival which averaged 92% overall. Only fish fed the PBM or BM/CG diets had average individual weights and feed conversion efficiencies that were not significantly different (P > 0.05) from the control diet (CTL). In Study 2, the formulation of the control diet (CTL) remained the same. Based on their performance in the first trial, PBM and BM/CG were chosen to now replace 75 or 100% of the fish meal. Fish were stocked at an average weight of 6.9 ± 1.7 g. After 11 wk, fish fed diets containing the BM/CG mixture at both levels were significantly smaller (P 5 0.05) than fish fed other diets and at 100% replacement survival was reduced. Fish fed diets containing poultry meal as the primary protein source performed as well as those fed the control diet (CTL). It appears that PBM can completely replace fish meal in diets for juvenile largemouth bass without adverse effects on growth, feed efficiency, or body composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.