The rectilinear "drift" of particles in a hydrodynamic drift ratchet arises from a combination of diffusive motion and particle-wall hydrodynamic interactions, and is therefore dependent on particle diffusivity, particle size, the amplitude and frequency of fluid oscillation and pore geometry. Using numerical simulations, we demonstrate that the drift velocity relative to the pore size is constant across different sized drift ratchet pores, if all the relevant non-dimensional groups (Péclet number, Strouhal number and ratio of particle to pore size) remain constant. These results clearly indicate for the first time the scaling parameters under which the drift ratchet achieves dynamic similarity, and so facilitates design, fabrication and testing of drift ratchets for experiments and eventually as commercial micro/nano fluidic separation devices.
Diatoms are microalgae encased in highly structured and regular frustules of porous silica. A long-standing biological question has been the function of these frustules, with hypotheses ranging from them acting as photonic light absorbers to being particle filters. While it has been observed that the girdle band pores of the frustule of Coscinodiscus sp. resemble those of a hydrodynamic drift ratchet, we show using scaling arguments and numerical simulations that they cannot act as effective drift ratchets. Instead, we present evidence that frustules are semiactive filters. We propose that frustule pores simultaneously repel viruses while promoting uptake of ionic nutrients via a recirculating, electroosmotic dead-end pore flow, a new mechanism of "hydrodynamic immunity".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.