Bemarituzumab is an afucosylated monoclonal antibody against FGFR2b (a FGF receptor) with demonstrated monotherapy clinical activity in patients with late-line gastric cancer whose tumors overexpress FGFR2b (NCT02318329). We describe the rationale and design of the FIGHT trial (NCT03343301), a global, randomized, double-blind, placebo-controlled Phase III study evaluating the role of bemarituzumab in patients with previously untreated, FGFR2b-overexpressing advanced gastroesophageal cancer. Patients are randomized in a blinded fashion to the combination of mFOLFOX6 and bemarituzumab or mFOLFOX6 and placebo. Eligible patients are selected based on the presence of either FGFR2b protein overexpression determined by immunohistochemistry or FGFR2 gene amplification determined by circulating tumor DNA. The primary end point is overall survival, and secondary end points include progression-free survival, objective response rate and safety.
Although differentiation of leukemic blasts to dendritic cells (DC) has promise in vaccine strategies, the mechanisms underlying this differentiation and the differences between leukemia and normal progenitor-derived DC are largely undescribed. In the case of chronic myeloid leukemia (CML), understanding the relationship between the induction of DC differentiation and the expression of the BCR-ABL oncogene has direct relevance to CML biology as well as the development of new therapeutic approaches. We now report that direct activation of protein kinase C (PKC) by the phorbol ester PMA in the BCR-ABL+ CML cell line K562 and primary CML blasts induced nonterminal differentiation into cells with typical DC morphology (cytoplasmic dendrites), characteristic surface markers (MHC class I, MHC class II, CD86, CD40), chemokine and transcription factor expression, and ability to stimulate T cell proliferation (equivalent to normal monocyte-derived DC). PKC-induced differentiation was associated with down-regulation of BCR-ABL mRNA expression, protein levels, and kinase activity. This down-regulation appeared to be signaled through the mitogen-activated protein kinase pathway. Therefore, PKC-driven differentiation of CML blasts into DC-like cells suggests a potentially novel strategy to down-regulate BCR-ABL activity, yet raises the possibility that CML-derived DC vaccines will be less effective in presenting leukemia-specific Ags.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.