For rare events described in terms of Markov processes, truly unbiased estimation of the rare event probability generally requires the avoidance of numerical approximations of the Markov process. Recent work in the exact and $$\varepsilon$$
ε
-strong simulation of diffusions, which can be used to almost surely constrain sample paths to a given tolerance, suggests one way to do this. We specify how such algorithms can be combined with the classical multilevel splitting method for rare event simulation. This provides unbiased estimations of the probability in question. We discuss the practical feasibility of the algorithm with reference to existing $$\varepsilon$$
ε
-strong methods and provide proof-of-concept numerical examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.