No abstract
The desire to create novel computing systems, paired with recent advances in neuroscientific understanding of the brain, has led researchers to develop neuromorphic architectures that emulate the brain. To date, such models are developed, trained, and deployed on the same substrate. However, excessive co-dependence between the substrate and the algorithm prevents portability, or at the very least requires reconstructing and retraining the model whenever the substrate changes. This paper proposes a well-defined abstraction layer -- the Neuromorphic instruction set architecture, or NISA -- that separates a neural application's algorithmic specification from the underlying execution substrate, and describes the Aivo framework, which demonstrates the concrete advantages of such an abstraction layer. Aivo consists of a NISA implementation for a rate-encoded neuromorphic system based on the cortical column abstraction, a state-of-the-art integrated development and runtime environment (IDE), and various profile-based optimization tools. Aivo's IDE generates code for emulating cortical networks on the host CPU, multiple GPGPUs, or as boolean functions. Its runtime system can deploy and adaptively optimize cortical networks in a manner similar to conventional just-in-time compilers in managed runtime systems (e.g. Java, C#). We demonstrate the abilities of the NISA abstraction by constructing a cortical network model of the mammalian visual cortex, deploying on multiple execution substrates, and utilizing the various optimization tools we have created. For this hierarchical configuration, Aivo's profiling based network optimization tools reduce the memory footprint by 50% and improve the execution time by a factor of 3x on the host CPU. Deploying the same network on a single GPGPU results in a 30x speedup. We further demonstrate that a speedup of 480x can be achieved by deploying a massively scaled cortical network across three GPGPUs. Finally, converting a trained hierarchical network to C/C++ boolean constructs on the host CPU results in 44x speedup.
No abstract
The desire to create novel computing systems, paired with recent advances in neuroscientific understanding of the brain, has led researchers to develop neuromorphic architectures that emulate the brain. To date, such models are developed, trained, and deployed on the same substrate. However, excessive co-dependence between the substrate and the algorithm prevents portability, or at the very least requires reconstructing and retraining the model whenever the substrate changes. This paper proposes a well-defined abstraction layer -- the Neuromorphic instruction set architecture, or NISA -- that separates a neural application's algorithmic specification from the underlying execution substrate, and describes the Aivo framework, which demonstrates the concrete advantages of such an abstraction layer. Aivo consists of a NISA implementation for a rate-encoded neuromorphic system based on the cortical column abstraction, a state-of-the-art integrated development and runtime environment (IDE), and various profile-based optimization tools. Aivo's IDE generates code for emulating cortical networks on the host CPU, multiple GPGPUs, or as boolean functions. Its runtime system can deploy and adaptively optimize cortical networks in a manner similar to conventional just-in-time compilers in managed runtime systems (e.g. Java, C#). We demonstrate the abilities of the NISA abstraction by constructing a cortical network model of the mammalian visual cortex, deploying on multiple execution substrates, and utilizing the various optimization tools we have created. For this hierarchical configuration, Aivo's profiling based network optimization tools reduce the memory footprint by 50% and improve the execution time by a factor of 3x on the host CPU. Deploying the same network on a single GPGPU results in a 30x speedup. We further demonstrate that a speedup of 480x can be achieved by deploying a massively scaled cortical network across three GPGPUs. Finally, converting a trained hierarchical network to C/C++ boolean constructs on the host CPU results in 44x speedup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.