Exploring the fine structures and physicochemical properties of physiologically relevant membranes is crucial to understanding biological membrane functions including membrane mechanical stability. We report a direct correlation of the self-organized structures exhibited in phase-segregated supported lipid bilayers consisting of dioleoylphosphatidylcholine/egg sphingomyelin/cholesterol (DEC) in the absence and presence of ceramide (DEC-Ceramide) with their nanomechanical properties using AFM imaging and high-resolution force mapping. Direct incorporation of ceramide into phase-segregated supported lipid bilayers formed ceramide-enriched domains, where the height topography was found to be imaging setpoint dependent. In contrast, liquid ordered domains in both DEC and DEC-Ceramide presented similar heights regardless of AFM imaging settings. Owing to its capability for simultaneous determination of the topology and interaction forces, AFM-based force mapping was used in our study to directly correlate the structures and mechanical responses of different coexisting phases. The intrinsic breakthrough forces, regarded as fingerprints of bilayer stability, along with elastic moduli, adhesion forces, and indentation of the different phases in the bilayers were systematically determined on the nanometer scale, and the results were presented as two-dimensional visual maps using a self-developed code for force curves batch analysis. The mechanical stability and compactness were increased in both liquid ordered domains and fluid disordered phases of DEC-Ceramide, attributed to the influence of ceramide in the organization of the bilayer, as well as to the displacement of cholesterol as a result of the generation of ceramide-enriched domains. The use of AFM force mapping in studying phase segregation of multicomponent lipid membrane systems is a valuable complement to other biophysical techniques such as imaging and spectroscopy, as it provides unprecedented insight into lipid membrane mechanical properties and functions.
Cholesterol is involved in endocytosis, exocytosis, and the assembly of sphingolipid/cholesterol-enriched domains, as has been demonstrated in both model membranes and living cells. In this work, we explored the influence of different cholesterol levels (5-40 mol%) on the morphology and nanomechanical stability of phase-segregated lipid bilayers consisting of dioleoylphosphatidylcholine/sphingomyelin/cholesterol (DOPC/SM/Chol) by means of atomic force microscopy (AFM) imaging and force mapping. Breakthrough forces were consistently higher in the SM/Chol-enriched liquid-ordered domains (Lo) than in the DOPC-enriched fluid-disordered phase (Ld) at a series of loading rates. We also report the activation energies (DeltaEa) for the formation of an AFM-tip-induced fracture, calculated by a model for the rupture of molecular thin films. The obtained DeltaEa values agree remarkably well with reported values for fusion-related processes using other techniques. Furthermore, we observed that within the Chol range studied, the lateral organization of bilayers can be categorized into three distinct groups. The results are rationalized by fracture nanomechanics of a ternary phospholipid/sphingolipid/cholesterol mixture using correlated AFM-based imaging and force mapping, which demonstrates the influence of a wide range of cholesterol content on the morphology and nanomechanical stability of model bilayers. This provides fundamental insights into the role of cholesterol in the formation and stability of sphingolipid/cholesterol-enriched domains, as well as in membrane fusion.
Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).
Investigating the structural and mechanical properties of lipid bilayer membrane systems is vital in elucidating their biological function. One route to directly correlate the morphology of phase-segregated membranes with their indentation and rupture mechanics is the collection of atomic force microscopy (AFM) force maps. These force maps, while containing rich mechanical information, require lengthy processing time due to the large number of force curves needed to attain a high spatial resolution. A force curve analysis toolset was created to perform data extraction, calculation and reporting specifically in studying lipid membrane morphology and mechanical stability. The procedure was automated to allow for high-throughput processing of force maps with greatly reduced processing time. The resulting program was successfully used in systematically analyzing a number of supported lipid membrane systems in the investigation of their structure and nanomechanics.
Streptococcus mutans is a Gram-positive oral bacterium that is a primary etiological agent associated with human dental caries. In the oral cavity, S. mutans adheres to immobilized salivary agglutinin (SAG) contained within the salivary pellicle on the tooth surface. Binding to SAG is mediated by cell surface P1, a multifunctional adhesin that is also capable of interacting with extracellular matrix proteins. This may be of particular importance outside of the oral cavity as S. mutans has been associated with infective endocarditis and detected in atherosclerotic plaque. Despite the biomedical importance of P1, its binding mechanisms are not completely understood. In this work, we use atomic force microscopy-based single-molecule and single-cell force spectroscopy to quantify the nanoscale forces driving P1-mediated adhesion. Single-molecule experiments show that full-length P1, as well as fragments containing only the P1 globular head or C-terminal region, binds to SAG with relatively weak forces (~50 pN). In contrast, single-cell analyses reveal that adhesion of a single S. mutans cell to SAG is mediated by strong (~500 pN) and long-range (up to 6000 nm) forces. This is likely due to the binding of multiple P1 adhesins to self-associated gp340 glycoproteins. Such a cooperative, long-range character of the S. mutans–SAG interaction would therefore dramatically increase the strength and duration of cell adhesion. We also demonstrate, at single-molecule and single-cell levels, the interaction of P1 with fibronectin and collagen, as well as with hydrophobic, but not hydrophilic, substrates. The binding mechanism (strong forces, cooperativity, broad specificity) of P1 provides a molecular basis for its multifunctional adhesion properties. Our methodology represents a valuable approach to probe the binding forces of bacterial adhesins and offers a tractable methodology to assess anti-adhesion therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.