This study investigates the application of synchronous interaction dynamics methodology to the design of auxiliary bearing systems. The technique is applied to a flexible rotor system and comparisons are made between the behavior predicted by this analysis method and the observed simulation response characteristics. Of particular interest is the influence of coupled shaft/bearing vibration modes on rotordynamical behavior. Experimental studies are also performed to validate the simulation results and provide insight into the expected behavior of such a system.
This study examines the response of a flexible rotor supported by load sharing between linear bearings and an auxiliary clearance bearing. The objective of the work is to develop a better understanding of the dynamic behavior of a magnetic bearing supported rotor system interacting with auxiliary bearings during a critical operating condition. Of particular interest is the effect of coupling between the bearing/housing and shaft vibration on the rotor-dynamic responses. A simulation model is developed and a number of studies are performed for various parametric configurations. An experimental investigation is also conducted to compare and verify the rotor-dynamic behavior predicted by the simulation studies. A strategy for reducing sychronous shaft vibration through appropriate design of coupled shaft/bearing/housing vibration modes is identified. The results are presented and discussed.
This paper provides the results of an extensive sliding wear testing program to evaluate wear resistance of several material couples currently used for high temperature applications such as ground based gas turbines and aircraft engines. Nickel and cobalt base superalloys and iron base stainless steels were tested in different combinations, and their wear rates compared to determine optimal wear resistance. The results show that an alloy’s wear resistance is highly dependent on operating temperature and its coupling with another material. The influences of friction, hardness, and oxide formation on the alloy’s wear resistance are also presented and discussed.
This study examines the response of a flexible rotor supported by load sharing between linear bearings and an auxiliary clearance bearing. The objective of the work is to develop a better understanding of the dynamical behavior of a magnetic bearing supported rotor system interacting with auxiliary bearings during a critical operating condition. Of particular interest is the effect of coupling between the bearing/housing and shaft vibration on the rotordynamical responses. A simulation model is developed and a number of studies are performed for various parametric configurations. An experimental investigation is also conducted to compare and verify the rotordynamic behavior predicted by the simulation studies. A strategy for reducing sychronous shaft vibration through appropriate design of coupled shaft/bearing/housing vibration modes is identified. The results are presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.