We analyse the novel dynamics arising in a nonlinear rotor dynamic system by investigating the discontinuity-induced bifurcations corresponding to collisions with the rotor housing (touchdown bearing surface interactions). The simplified Föppl/ Jeffcott rotor with clearance and mass unbalance is modelled by a two degree of freedom impact-friction oscillator, as appropriate for a rigid rotor levitated by magnetic bearings. Two types of motion observed in experiments are of interest in this paper: no contact and repeated instantaneous contact. We study how these are affected by damping and stiffness present in the system using analytical and numerical piecewisesmooth dynamical systems methods. By studying the impact map, we show that these types of motion arise at a novel non-smooth Hopf-type bifurcation from a boundary equilibrium bifurcation point for certain parameter values. A local analysis of this bifurcation point allows us a complete understanding of this behaviour in a general setting. The analysis identifies criteria for the existence of such smooth and non-smooth bifurcations, which is an essential step towards achieving reliable and robust controllers that can take compensating action.