ABSTRACT:Multiple drug resistance (mdr) genes encode P-glycoprotein, which is responsible for resistance to some cancer chemotherapeutic drugs and efflux of xenobiotics of cells. Thus, mdr can protect organs from xenobiotics. In rats, there are two mdr1 genes capable of xenobiotic transport, mdr1a and mdr1b. The purpose of this study was to determine the tissue distribution of rat mdr1a and mdr1b mRNA and whether microsomal enzyme inducers that increase phase I and II drug-metabolizing enzymes coordinately regulate mdr1a and/or mdr1b. The mRNA levels of mdr1a and mdr1b were determined using branched-DNA signal amplification technology. The highest level of expression of mdr1a mRNA was observed in the gastrointestinal tract, with levels increasing, respectively, from duodenum, jejunum, and ileum to large intestine. Expression levels of mdr1a mRNA in the cerebral cortex, cerebellum, kidney, lung, and liver were less than one-tenth of that in the ileum. The tissue distribution of mdr1b mRNA was similar to mdr1a with highest expression in the gastrointestinal tract but only about 3-fold higher than in most other tissues. The induction of mdr1a and mdr1b mRNA transcripts in liver, kidney, and ileum by treatment of rats with 18 chemicals representing aryl hydrocarbon receptor ligands, constitutive androstane receptor ligands, pregnane X receptor ligands, peroxisome proliferator-activated receptor ligands, electrophile-response-element activators, and CYP4502E1 inducers was assessed. Hepatic, renal, and intestinal expression of mdr1a and mdr1b mRNA were not significantly altered by treatment of rats with any of these classes of ligands. In conclusion, the primary expression of rat mdr1 genes is in the gastrointestinal tract where they are thought to function to decrease the absorption of some xenobiotics. Rat mdr1 gene expression is not readily increased by microsomal enzyme inducers in rats through coordinate mechanisms with phase I and II drugmetabolizing enzymes.
Kallikrein-like simple serine proteases are encoded by closely related members of a gene family in several mammalian species. Molecular cloning and genomic Southern blot analysis after conventional and pulsed-field gel electrophoresis indicate that the rat kallikrein gene family comprises 15-20 members, probably closely linked at a single locus. Determination of the nucleotide sequences of the rGK-3, -4, and -6 genes here completes sequence data for a total of nine rat kallikrein family members. Comparison of the rat gene sequences to each other and to those of human and mouse kallikrein family genes reveals patterns of relatedness indicative of concerted evolution. Analysis of nucleotide sequence variants in kallikrein family members shows that most sequence variants are shared by multiple family members; the patterns of shared variants are complex and indicate multiple short gene conversions between family members. Sequence exchanges between family members generate novel assortments of variants in amino acid coding regions that may affect substrate specificity and thereby contribute to the diversity of enzyme activity. Furthermore, small sequence exchanges also may play a role in generating the diverse patterns of tissue-specific expression of rat family members. These analyses indicate an important role for gene conversion in the evolution of the functional diversity of these duplicated genes.
We have characterized two kallikrein gene family members expressed in the prostate and submaxillary glands of rats. One mRNA (S3) is identical with the previously characterized submaxillary gland S3 mRNA that encodes an enzyme closely related to tonin. The second mRNA (P1) encodes a novel kallikrein-like enzyme that retains key amino acid residues responsible for the characteristic enzymatic cleavage specificity of kallikrein. Two P1-specific oligonucleotide probes derived from the P1 mRNA sequence were used to demonstrate the presence of P1 mRNA in the prostate and submaxillary glands and its absence in eight other rat tissues known to express one or more members of the kallikrein family. The P1-coding gene (rGK-8) was identified among genomic clones containing kallikrein family members by hybridization with a P1-specific oligonucleotide probe. The identification of the P1 gene was verified by nucleotide sequencing; the exon sequences of rGK-8 match the P1 mRNA sequence. The upstream region of rGK-8, where transcriptional regulatory elements likely reside, is very similar to that of other rat kallikrein family genes which are expressed in distinct tissue-specific patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.